Handbook of Antimicrobial Therapy

Selected Articles from Treatment Guidelines with updates from The Medical Letter®

Published by

The Medical Letter, Inc.
1000 Main Street
New Rochelle, New York 10801-7537

800-211-2769
914-235-0500
Fax 914-632-1733
www.medicalletter.org

17th Edition
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>7</td>
</tr>
<tr>
<td>Pathogens in Specific Organs and Tissues</td>
<td>32</td>
</tr>
<tr>
<td>Bacterial Infections</td>
<td></td>
</tr>
<tr>
<td>Choice of Antibacterial Drugs</td>
<td>43</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>64</td>
</tr>
<tr>
<td>Gemifloxacin (Factive)</td>
<td>75</td>
</tr>
<tr>
<td>Telithromycin (Ketek)</td>
<td>79</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>85</td>
</tr>
<tr>
<td>Antimicrobial Prophylaxis for Surgery</td>
<td>98</td>
</tr>
<tr>
<td>Antibacterial Prophylaxis for Dental, GI and GU Procedures</td>
<td>109</td>
</tr>
<tr>
<td>Lyme Disease</td>
<td>112</td>
</tr>
<tr>
<td>Fungal Infections</td>
<td>117</td>
</tr>
<tr>
<td>Micafungin (Mycamine)</td>
<td>133</td>
</tr>
<tr>
<td>HIV Infection</td>
<td>138</td>
</tr>
<tr>
<td>Two Once-Daily Fixed-Dose NRTI Combinations</td>
<td>155</td>
</tr>
<tr>
<td>Viral Infections (Non-HIV)</td>
<td>157</td>
</tr>
<tr>
<td>Entecavir (Baraclude)</td>
<td>177</td>
</tr>
<tr>
<td>Parasitic Infections</td>
<td>179</td>
</tr>
<tr>
<td>Sexually Transmitted Infections</td>
<td>194</td>
</tr>
<tr>
<td>Advice for Travelers</td>
<td>209</td>
</tr>
<tr>
<td>Menactra: A Meningococcal Conjugate Vaccine</td>
<td>227</td>
</tr>
<tr>
<td>Rifaximin (Xifaxan)</td>
<td>232</td>
</tr>
<tr>
<td>Picaridin: A New Insect Repellent</td>
<td>235</td>
</tr>
<tr>
<td>Adverse Effects of Antimicrobial Drugs</td>
<td>238</td>
</tr>
<tr>
<td>Dosage of Antimicrobial Drugs</td>
<td>253</td>
</tr>
<tr>
<td>Pregnancy, Safety</td>
<td>278</td>
</tr>
<tr>
<td>Trade Names</td>
<td>284</td>
</tr>
<tr>
<td>Index</td>
<td>304</td>
</tr>
<tr>
<td>Table Index</td>
<td>331</td>
</tr>
</tbody>
</table>
Introduction

The Medical Letter, Inc. is a nonprofit company founded in 1958 by Arthur Kallet, the co-founder of Consumers Union, and Dr. Harold Aaron, with the goal of providing health care professionals with objective, independent analyses of both prescription and over-the-counter drugs. In addition to its newsletters, The Medical Letter on Drugs and Therapeutics and Treatment Guidelines from The Medical Letter, the company also publishes handbooks and software on topics such as adverse drug interactions and antimicrobial therapy. It is supported solely by subscription fees and accepts no advertising, grants or donations.

The Medical Letter on Drugs and Therapeutics offers comprehensive drug evaluations of virtually all new drugs and reviews of older drugs when important new information becomes available on their usefulness or adverse effects. Occasionally, The Medical Letter publishes an article on a new non-drug treatment or a diagnostic aid. Treatment Guidelines from The Medical Letter consists of review articles of drug classes for treatment of major indications. A typical issue contains recommendations for first choice and alternative drugs with assessments of the drugs’ effectiveness, safety and cost. The Medical Letter is published every other week and Treatment Guidelines is published once a month. Both are intended to meet the needs of the busy health care professional who wants unbiased, reliable and timely information on new drugs and comprehensive reviews of treatments of choice for major indications. Both publications help health care professionals make decisions based on the best interests of their patients, rather than the commercial interests of the pharmaceutical industry.
The editorial process used for Medical Letter publications relies on a consensus of experts to develop prescribing recommendations. An expert consultant or one of our editors prepares the preliminary report on a drug (for *The Medical Letter*) or drugs for particular indications (for *Treatment Guidelines*) in terms of their effectiveness, adverse effects and possible alternatives. Both published and available unpublished studies are carefully examined, paying special attention to the results of controlled clinical trials. The preliminary draft is edited and sent to every member of the Advisory Board of The Medical Letter, to 10-20 other investigators who have clinical and experimental experience with the drug or type of drug or disease under review, to the FDA and sometimes the CDC, to the first authors of all the articles cited in the text, to appropriate representatives of the pharmaceutical companies making the drugs under review, and often to companies that make competitor drugs as well. Many critical observations, suggestions and questions are received from the reviewers and are incorporated into the article during the revision process. Further communication as needed is followed by checking and editing to make sure the final appraisal is not only accurate, but also easy to read.

The Medical Letter and *Treatment Guidelines* are crucial resources for members of the health care community to consult when they are overwhelmed by advertisements and personal visits from sales representatives of the pharmaceutical industry.

The Medical Letter, Inc., is based in New Rochelle, NY. For more information call (800) 211-2769 or visit their Web site at www.medicalletter.org.
AMINOGLYCOSIDES — Aminoglycosides are effective against many gram-negative bacteria, but not gram-positives or anaerobes. They are often used together with a β-lactam antibiotic such as ampicillin, ticarcillin, piperacillin, a cephalosporin, imipenem or aztreonam. They may be ototoxic and nephrotoxic, especially in patients with diminished renal function.

Amikacin (Amikin) — Amikacin is often effective for treatment of infections caused by gram-negative strains resistant to gentamicin and tobramycin, including some strains of Pseudomonas aeruginosa and Acinetobacter. It is generally reserved for treatment of serious infections caused by amikacin-susceptible gram-negative bacteria known or suspected to be resistant to the other aminoglycosides. Like other aminoglycosides, its distribution to the lungs is limited and when used to treat gram-negative bacilli that cause pneumonia it should be combined with another agent to which the organism is susceptible, such as a β-lactam. It has also been used concurrently with other drugs for treatment of some mycobacterial infections.

Gentamicin (Garamycin, and others) — Useful for treatment of many hospital-acquired infections caused by gram-negative bacteria. Strains of gram-negative bacilli resistant to gentamicin are often susceptible to amikacin or to one of the third-generation cephalosporins, cefepime, or imipenem or meropenem. Gentamicin is also used with penicillin G, ampicillin or vancomycin for treatment of endocarditis caused by susceptible enterococci.

Kanamycin (Kantrex, and others) — Active against some gram-negative bacilli (except Pseudomonas or anaerobes), but most centers
now use gentamicin, tobramycin or amikacin instead. Kanamycin can be useful concurrently with other drugs for treatment of tuberculosis.

Neomycin — A drug that can cause severe damage to hearing and renal function and has the same antibacterial spectrum as kanamycin. Parenteral formulations have no rational use because of their toxicity. Deafness has also followed topical use over large areas of skin, injection into cavities such as joints, and oral administration, especially in patients with renal insufficiency.

Streptomycin — Streptomycin has been displaced by gentamicin for treatment of gram-negative infections, but it is still sometimes used concurrently with other drugs for treatment of tuberculosis and is occasionally used with penicillin, ampicillin or vancomycin to treat enterococcal endocarditis.

Tobramycin (*Nebcin*, and others) — Similar to gentamicin but with greater activity *in vitro* against *Pseudomonas aeruginosa* and less activity against *Serratia*. In clinical use, it is not certain that it is significantly less nephrotoxic than gentamicin.

AMINOSALICYLIC ACID (PAS) — Used in antituberculosis regimens for many years, its distressing gastrointestinal effects caused many patients to stop taking it prematurely. An enteric-coated oral formulation (*Paser*) is more tolerable, and is used occasionally in combination with other drugs in treating tuberculosis due to organisms resistant to first-line drugs.

AMOXICILLIN (*Amoxil*, and others) — See Penicillins

AMOXICILLIN/CLAUVULANIC ACID (*Augmentin*) — See Penicillins
AMPICILLIN (*Principen*, and others) — See Penicillins

AMPICILLIN /SULBACTAM (*Unasyn*) — See Penicillins

AZITHROMYCIN (*Zithromax*) — See Macrolides

AZTREONAM (*Azactam*) — A parenteral monobactam (ß-lactam) antibiotic active against most aerobic gram-negative bacilli, including *Pseudomonas aeruginosa*, but not against gram-positive organisms or anaerobes. Aztreonam has little cross-allergenicity with penicillins and cephalosporins.

BACITRACIN — A nephrotoxic drug used in the past to treat severe systemic infections caused by staphylococci resistant to penicillin G. Its use is now restricted mainly to topical application.

CAPREOMYCIN (*Capastat*) — A second-line antituberculosis drug.

CARBAPENEMS

Ertapenem (*Invanz*) — A parenteral carbapenem with a longer half-life but narrower antibacterial spectrum than imipenem and meropenem. It is more active against some extended-spectrum ß-lactamase-producing gram-negative bacilli, but less active against gram-positive cocci, *Pseudomonas aeruginosa* and *Acinetobacter* spp. For empiric treatment of intra-abdominal, pelvic and urinary tract infections and community-acquired pneumonia, it offers no clear advantage over older drugs.

Imipenem/Cilastatin (*Primaxin*) — A parenteral carbapenem ß-lactam with an especially broad antibacterial spectrum. Cilastatin sodium inhibits renal tubular metabolism of imipenem. This combination may be especially useful for treatment of serious infections in which aer-
obic gram-negative bacilli, anaerobes, and *Staphylococcus aureus* (but not oxacillin-resistant strains) might all be involved. It is active against many gram-negative bacilli that are resistant to third- and fourth-generation cephalosporins, aztreonam and aminoglycosides. Resistance to imipenem in *Pseudomonas aeruginosa* occasionally develops during therapy.

Meropenem (*Merrem*) — A carbapenem for parenteral use similar to imipenem/cilastatin. It may have less potential than imipenem for causing seizures.

CARBENICILLIN — See Penicillins

CEPHALOSPORINS — All cephalosporins except ceftazidime have good activity against most gram-positive cocci, and all cephalosporins are active against many strains of gram-negative bacilli. All cephalosporins are inactive against enterococci and oxacillin-resistant staphylococci. These drugs are often prescribed for patients allergic to penicillin, but such patients may also have allergic reactions to cephalosporins. Rare, potentially fatal immune-mediated hemolysis has been reported, particularly with ceftriaxone and cefotetan.

The cephalosporins can be classified into four “generations” based on their activity against gram-negative organisms. All first-generation drugs have a similar spectrum, including many gram-positive cocci (but not enterococci or oxacillin-resistant *Staphylococcus aureus*), *Escherichia coli*, *Klebsiella pneumoniae*, and *Proteus mirabilis*. Among the first-generation parenteral cephalosporins, **cefazolin** (*Ancef*, and others) is less painful on intramuscular injection than **cephapirin** (*Cefadyl*, and others). The first-generation parenteral cephalosporins are usually given intravenously, and cefazolin is most frequently used because of its longer half-life.
The second-generation cephalosporins have broader in vitro activity against gram-negative bacteria. **Cefamandole** (*Mandol*) has increased activity against *Haemophilus influenzae* and some gram-negative bacilli, but is occasionally associated with prothrombin deficiency and bleeding. **Cefoxitin** (*Mefoxin*) has improved activity against *Bacteroides fragilis*, *Neisseria gonorrhoeae* and some aerobic gram-negative bacilli. **Cefotetan** (*Cefotan*) has a spectrum of activity similar to that of cefoxitin; it has a side chain that has rarely been associated with prothrombin deficiency and bleeding. **Cefuroxime** (*Zinacef, Kefurox*), another second-generation cephalosporin, has a spectrum of activity similar to cefamandole. Cefuroxime and cefamandole are less active than third-generation cephalosporins against penicillin-resistant strains of *Streptococcus pneumoniae*. **Cefonicid** (*Monocid*) has a longer half-life than the other second-generation cephalosporins, but is less active against gram-positive organisms and less active than cefoxitin against anaerobes.

The third-generation cephalosporins, **cefotaxime** (*Claforan*), **cefeperazone** (*Cefobid*), **ceftizoxime** (*Cefizox*), **ceftriaxone** (*Rocephin*) and **ceftazidime** (*Fortaz*, and others), and the fourth-generation cephalosporin, **cefepime** (*Maxipime*), are more active than the second-generation cephalosporins against enteric gram-negative bacilli, including nosocomially acquired strains resistant to multiple antibiotics. These agents are highly active against *Haemophilus influenzae* and *Neisseria gonorrhoeae*, including penicillinase-producing strains. Except for ceftazidime, they are moderately active against anaerobes, but often less so than metronidazole, chloramphenicol, clindamycin, cefoxitin, cefotetan, ampicillin/sulbactram, piperacillin/tazobactam, ticarcillin/clavulanic acid, or carbapenems. Ceftazidime has poor activity against gram-positive organisms and anaerobes. Cefotaxime, ceftizoxime, ceftriaxone and cefepime are the most active in vitro against gram-positive organisms, but ceftizoxime has poor activity against *Streptococcus pneumoniae* that are intermediate or highly resistant to penicillin. Cefoperazone, which can
cause bleeding, is less active than other third-generation cephalosporins against many gram-negative bacilli, but more active than cefotaxime, ceftriaxone or ceftazidime against *Pseudomonas aeruginosa*. Ceftazidime and cefepime have the greatest activity among the cephalosporins against *Pseudomonas aeruginosa*. Cefepime has somewhat greater activity against enteric gram-negative bacilli than the third-generation cephalosporins. The third-generation cephalosporins and cefepime are expensive, but are useful for treatment of serious hospital-associated gram-negative infections when used alone or in combination with aminoglycosides such as gentamicin, tobramycin or amikacin. Gram-negative bacteria that produce “broad spectrum” β-lactamases are resistant to first-generation cephalosporins, but are usually sensitive to second and third generation cephalosporins. However, gram-negative bacilli that produce “extended spectrum β-lactamases”, particularly some *Klebsiella* strains and those that produce chromosomally-encoded β-lactamases, are usually resistant to first, second and third-generation cephalosporins. These organisms are often hospital-associated. Cefipime may be more active than the third-generation cephalosporin against these strains, but imipenem and meropenem are most consistently active against them. Cefotaxime and ceftriaxone are often used for treatment of meningitis. Ceftriaxone has been widely used for single-dose treatment of gonorrhea.

Cephalexin (*Keflex*, and others), **cephradine** (*Velosef*, and others), and **cefadroxil** (*Duricef*, and others) are well-absorbed oral cephalosporins with first-generation antimicrobial activity; cephradine is also available for parenteral use. **Cefaclor** (*Ceclor*, and others), **cefuroxime axetil** (*Ceftin*), **cefprozil** (*Cefzil*) and **loracarbef** (*Lorabid*) are oral second-generation agents with increased activity against *Haemophilus influenzae* and *Moraxella catarrhalis*. **Cefixime**, an oral cephalosporin with activity against gram-positive organisms similar to that of first-generation cephalosporins except for its poor activity against staphylococci; against gram-negative bacteria, it has greater activity than second-genera-
Cephalosporins. It is useful for single-dose oral treatment of gonorrhea. **Cefpodoxime proxetil (Vantin)**, **cefdinir (Omnicef)** and **cefditoren pivoxil (Spectracef)** are oral cephalosporins similar to cefixime, but with greater activity against methicillin-susceptible staphylococci. **Ceftibuten (Cedax)** is an oral cephalosporin similar to cefixime in its gram-negative activity and poor activity against staphylococci, but it has only inconsistent activity against *Streptococcus pneumoniae*.

CHLORAMPHENICOL (*Chloromycetin*, and others) — An effective drug for treatment of meningitis, epiglottitis, or other serious infections caused by *Haemophilus influenzae*, severe infections with *Salmonella typhi*, for some severe infections caused by *Bacteroides* (especially those in the central nervous system), and for treatment of vancomycin-resistant *Enterococcus*. Chloramphenicol is often an effective alternative for treatment of pneumococcal or meningococcal meningitis in patients allergic to penicillin, but some strains of *Streptococcus pneumoniae* are resistant to it. Because it can cause fatal blood dyscrasias, chloramphenicol should be used only for serious infections caused by susceptible bacteria that cannot be treated effectively with less toxic agents.

CINOXACIN (*Cinobac*, and others) — See Quinolones

CIPROFLOXACIN (*Cipro*) — See Fluoroquinolones

CLARITHROMYCIN (*Biaxin*) — See Macrolides

CLINDAMYCIN (*Cleocin*, and others) — A derivative of lincomycin with a similar antibacterial spectrum, clindamycin can cause severe diarrhea and pseudomembranous colitis. It is one of the alternative drugs for anaerobic infections outside the central nervous system, and can also be used as an alternative for treatment of some staphylococcal infections in patients allergic to penicillins. Strains of *S. aureus* that are sensitive to
Clindamycin, but resistant to erythromycin become rapidly resistant to clindamycin when it is used. Clindamycin is also used concurrently with other drugs to treat *Pneumocystis carinii* pneumonia and toxoplasmosis. Clindamycin may be beneficial in treatment of necrotizing fasciitis due to Group A streptococcus but, because of the possibility of resistance to clindamycin, it should be used in combination with penicillin G.

CLOFAZIMINE (*Lamprene*) — An oral agent used with other drugs for treatment of leprosy.

CLOXACILLIN — See Penicillinase-resistant Penicillins

COLISTIMETHATE (*Coly-Mycin*) — See Polymyxins

CYCLOSERINE (*Seromycin*, and others) — A second-line antituberculosis drug.

DAPTOMYCIN (*Cubicin*) — A cyclic lipopeptide antibiotic that is effective for treating complicated skin and soft tissue infections. It is rapidly bactericidal against gram-positive bacteria by causing membrane depolarization. Its anti-bacterial activity includes oxacillin-sensitive and resistant, and vancomycin-sensitive and resistant *S. aureus* and coagulase-negative staphylococci, streptococci and vancomycin-sensitive and resistant enterococci. It is administered intravenously once daily and is excreted unchanged in urine; dose adjustments are required when given to individuals with severe renal insufficiency. Adverse effects include the potential for skeletal muscle damage, with rare reversible CPK elevations. More severe muscle effects, which were seen in preclinical studies, do not seem to occur at the currently approved doses; higher doses may increase the potential for rhabdomyolysis. Daptomycin should not be used to treat pneumonia because it penetrates lung parenchyma poorly and is inactivated by surfactant. Clinical trials are
underway evaluating the drug for treatment of staphylococcal bacte-

eremia and endocarditis.

DEMECLOCYCLINE (*Declomycin*) — See Tetracyclines

DICLOXACILLIN (*Dycill*, and others) — See Penicillinase-resistant Penicillins

DIRITHROMYCIN (*Dynabac*) — See Macrolides

DOXYCYCLINE (*Vibramycin*, and others) — See Tetracyclines

ENOXACIN (*Penetrex*) — See Fluoroquinolones

ERTAPENEM (*Invanz*) — See Carbapenems

ERYTHROMYCIN (*Erythrocin*, and others) — See Macrolides

ERYTHROMYCIN-SULFISOXAZOLE (*Pediazole*, and others) — See Macrolides

ETHIONAMIDE (*Trecator-SC*) — A second-line antituberculosis drug.

ETHAMBUTOL (*Myambutol*) — Often used in antituberculosis regi-

ments, it can cause optic neuritis.

FLUOROQUINOLONES — Fluoroquinolones are synthetic anti-bac-

terial agents with activity against gram-positive and gram-negative organisms. With the increased use of fluoroquinolones, resistant organ-

isms have become more frequent, especially among strains of *Staphylococcus aureus* and *Pseudomonas aeruginosa*. Resistance
among *Streptococcus pneumoniae* strains has begun to emerge but is still rare, especially in the US. None of these agents is recommended for use in children or pregnant women. All can cause gastrointestinal disturbances and, less commonly central nervous system toxicity. Tendon effects and hypersensitivity reactions, including vasculitis, serum sickness-like reactions and anaphylaxis, occur rarely. Hypo- and hyperglycemia can also occur rarely.

Ciprofloxacin (*Cipro*, and others) — Used for oral or intravenous treatment of a wide variety of gram-positive and gram-negative bacterial infections in adults, including those due to oxacillin-susceptible and resistant staphylococci, *Haemophilus influenzae*, *Neisseria*, enteric pathogens and other aerobic gram-negative bacilli, and *Pseudomonas aeruginosa*, but not anaerobes. Newer fluoroquinolones such as levofloxacin, gatifloxacin, gemifloxacin and moxifloxacin are preferred for treatment of gram-positive coccal infections such as those caused by *S. pneumoniae* and *S. aureus*. Ciprofloxacin is useful for treatment of urinary tract infections caused by enteric gram-negative bacilli or *Pseudomonas aeruginosa*. Oral ciprofloxacin has been effective in treating patients with neutropenia and fever who are at low risk for mortality. Ciprofloxacin is now one of the preferred prophylactic agents for contacts of patients with meningococcal disease. It is also used for prophylaxis after *Bacillus anthracis* (Anthrax) exposure. Emergence of resistance in staphylococcal and *Pseudomonas* strains and other gram-negative organisms is increasingly encountered.

Enoxacin (*Penetrex*) — An oral fluoroquinolone similar to ciprofloxacin that can be used to treat urinary tract infection and uncomplicated gonorrhea.

Gatifloxacin (*Tequin*), **levofloxacin** (*Levaquin*), **moxifloxacin** (*Avelox*) and **gemifloxacin** (*Factive*) — More active than ciprofloxacin
or ofloxacin against gram-positive organisms, such as **Streptococcus pneumoniae**, including strains highly resistant to penicillin, and **Staphylococcus aureus**. Like other fluoroquinolones, they are active against **Legionella pneumophila**, **Chlamydia spp.**, **Mycoplasma pneumoniae**, **Haemophilus influenzae** and **Moraxella catarrhalis**. All are effective for many community-acquired respiratory infections. Levofloxacin, gatifloxacin and moxifloxacin are less active than ciprofloxacin *in vitro* against enteric gram-negative bacilli and **Pseudomonas aeruginosa**, but have been effective in treating urinary tract infections and other systemic infections caused by these organisms. Levofloxacin has been used to treat some oxacillin-sensitive and oxacillin-resistant *S. aureus* infections, although resistance is increasing. Levofloxacin, ofloxacin or ciprofloxacin are sometimes used as second-line anti-tuberculous drugs in combination with other agents. Levofloxacin is more effective for treatment of **Legionella pneumophila** than azithromycin. Gatifloxacin, levofloxacin and moxifloxacin are available for both oral and parenteral use. Gemifloxacin is only available for oral use. Gatifloxacin, levofloxacin and moxifloxacin have rarely been associated with torsades de pointes arrhythmia. Gemifloxacin has produced more rashes than other fluoroquinolones.

Lomefloxacin (*Maxaquin*) — An oral once-a-day fluoroquinolone promoted for treatment of urinary tract infections and bronchitis, but pneumococci and other streptococci are resistant to the drug.

Norfloxacin (*Noroxin*) — An oral fluoroquinolone for treatment of urinary tract infections due to **Enterobacteriaceae**, **Enterococcus** or **Pseudomonas aeruginosa**.

Ofloxacin (*Floxin*) — An oral and intravenous fluoroquinolone similar to ciprofloxacin but less active against **Pseudomonas**. Ofloxacin can be used for single-dose treatment of gonorrhea and for seven-day
treatment of chlamydial infections. It is sometimes used as a second-line anti-tuberculous drug in combination with other agents.

Trofloxacin (*Trovan*) has been associated with rare but fatal hepatitis, and should be restricted to brief (<14 days) inpatient use with liver monitoring.

Fosfomycin (*Monurol*) — Can be used as a single-dose oral agent with moderate effectiveness for treatment of uncomplicated urinary tract infections caused by many strains of enteric gram-negative bacilli, enterococci and some strains of *Staphylococcus saprophyticus*, but generally not *Pseudomonas*. It is much more expensive than trimethoprim/sulfamethoxazole.

Furazolidone (*Furoxone*) — An oral nonabsorbable antimicrobial agent of the nitrofuran group that inhibits monoamine oxidase (MAO). The manufacturer recommends it for treatment of bacterial diarrhea. Its safety has been questioned (oral administration induces mammary tumors in rats) and other more effective drugs are available.

Gatifloxacin (*Tequin*) — See Fluoroquinolones

Gemifloxacin (*Factive*) — See Fluoroquinolones

Gentamicin (*Garamycin*, and others) — See Aminoglycosides

Imipenem/Cilastatin (*Primaxin*) — See Carbapenems

Isoniazid (*Nydrazid*, and others) — A major antituberculosis drug that can cause fatal hepatitis. **Rifampin-isoniazid-pyrazinamide** (*Rifater*) and **rifampin-isoniazid** (*Rifamate*) are fixed-dose combinations for treatment of tuberculosis.
KANAMYCIN (Kantrex, and others) — See Aminoglycosides

LEVOFLOXACIN (Levaquin) — See Fluoroquinolones

LINCOMYCIN (Lincocin) — Similar to clindamycin in antibacterial activity and adverse effects. Rarely indicated for treatment of any infection because it is less active than clindamycin.

LINEZOLID (Zyvox) — An oxazolidinone bacteriostatic antibiotic available in both an oral and intravenous formulation. It is active against Enterococcus faecium and E. faecalis including vancomycin-resistant enterococcal infections. Linezolid is also active against oxacillin-resistant Staphylococcus aureus, S. epidermidis and penicillin-resistant Streptococcus pneumoniae. Reversible thrombocytopenia has occurred, especially with therapy for more than 2 weeks. A serotonin syndrome has been observed in patients taking linezolid together with a selective serotonin receptor inhibitor. Emergence of resistance has been observed with enterococcal and S. aureus strains.

LOMEFLOXACIN (Maxaquin) — See Fluoroquinolones

MACROLIDES

Azithromycin (Zithromax) — A macrolide antibiotic that has much less gastrointestinal toxicity than erythromycin and is not associated with drug interactions with the CYP3A cytochrome P-450 enzyme systems. A single dose has been effective for treatment of urethritis and cervicitis caused by Chlamydia and for treatment of trachoma. Azithromycin is useful in treating Mycoplasma pneumoniae, Chlamydia pneumoniae and Legionella pneumophila pneumonias, as well as some respiratory infections due to Streptococcus pneumoniae, Haemophilus influenzae or Moraxella catarrhalis. However, an increasing number of
S. pneumoniae strains have become resistant to the macrolides and azithromycin should not be used alone to treat pneumococcal pneumonia unless the causative strain is known to be sensitive to the macrolides. Azithromycin alone is effective for prevention of *Mycobacterium avium* infections, and combined with other drugs, such as ethambutol, rifabutin or ciprofloxacin, it is effective for treatment.

Clarithromycin (*Biaxin*) — A macrolide antibiotic similar to azithromycin, but with a shorter half-life. It is somewhat more active than azithromycin against gram-positive organisms and less active against gram-negative organisms. Clarithromycin is effective for prevention of *Mycobacterium avium* infections and, combined with other drugs, for treatment of both *M. avium* and *Helicobacter pylori*. It has more adverse drug interactions than azithromycin.

Dirithromycin (*Dynabac*) — Similar to erythromycin; it can be given once a day.

Erythromycin (*Erythrocin*, and others) — Used especially for respiratory tract infections due to pneumococci or Group A streptococci in patients allergic to penicillin, for pneumonia due to *Mycoplasma pneumoniae* or *Chlamydia spp.*, and for treatment of infection caused by *Legionella pneumophila*, erythromycin has few adverse effects except for frequent gastrointestinal disturbances but many drug interactions involving the CYP3A cytochrome P-450 system. Erythromycin given orally or intravenously may rarely be associated with torsades de pointes, a potentially fatal arrhythmia; risk of torsades is increased by concurrent use of CYP3A inhibitors. Use in young infants has rarely been associated with hypertrophic pyloric stenosis. The estolate formulation (*Ilosone*) can cause cholestatic jaundice. Erythromycin is not recommended for treatment of serious staphylococcal infections, even when the organisms are susceptible to the drug *in vitro*, because of potential for rapid development of resistance. Strains of *Streptococcus*
pneumoniae and Group A streptococci resistant to erythromycin have become more frequent and the drug should not be used alone to treat community-acquired pneumonia when pneumococcus is likely, unless susceptibility of the organism has been established.

Erythromycin/Sulfisoxazole (*Pediazole*, and others) — A combination of 100 mg of erythromycin ethylsuccinate and 300 mg sulfisoxazole acetyl per half-teaspoon for oral treatment of acute otitis media.

Troleandomycin (*TAO*) — This oral drug has an antibacterial spectrum like that of the erythromycins, but it can cause cholestatic jaundice, and there are no reasonable indications for its use.

MEROPENEM (*Merrem*) — See Carbapenems

METHENAMINES (*Mandelamine*, and others) — Oral drugs that can sterilize an acid urine. They are used for prophylaxis of chronic or recurrent urinary tract infections, but trimethoprim/sulfamethoxazole is more effective.

METHICILLIN — See Penicillinase-resistant Penicillins

METRONIDAZOLE (*Flagyl*, and others) — Available in oral form for treatment of trichomoniasis, amebiasis, giardiasis and *Gardnerella vaginalis* vaginitis, metronidazole is also available for intravenous treatment of anaerobic bacterial infections. Good penetration of the blood-brain barrier may be an advantage in treating central-nervous-system infections due to *Bacteroides fragilis*. Metronidazole is the drug of choice for treatment of pseudomembranous enterocolitis due to *Clostridium difficile*. It is sometimes used in combination with other drugs to treat *H. pylori* infection.

MINOCYCLINE (*Minocin*, and others) — See Tetracyclines
MOXIFLOXACIN (*Avelox*) — See Fluoroquinolones

NAFCILLIN (*Nafcil*, and others) — See Penicillinase-resistant Penicillins

NALIDIXIC ACID (*NegGram*, and others) — See Quinolones

NEOMYCIN — See Aminoglycosides

NITROFURANTOIN (*Macrodantin*, and others) — This oral agent is used for prophylaxis or treatment of urinary tract infections, especially those resistant to other agents. Because of its potential toxicity, nitrofurantoin should not be used when renal function is markedly diminished. Nausea and vomiting are often troublesome, and peripheral neuropathy, pulmonary reactions and severe hepatotoxicity may occur.

NORFLOXACIN (*Noroxin*) — See Fluoroquinolones

OFLOXACIN (*Floxin*) — See Fluoroquinolones

OXACILLIN — See Penicillinase-resistant Penicillins

PENICILLINS

Natural Penicillins — Penicillin remains the drug of choice for Group A streptococcal infections and for treatment of syphilis and some other infections. Clindamycin may be beneficial for treatment of Group A streptococcal necrotizing fasciitis, but it should be combined with penicillin G because of increasing resistance to clindamycin in Group A streptococcus. *Streptococcus pneumoniae* strains frequently show intermediate or high-level resistance to penicillin. Penicillin is effective for fully sensitive strains, and high doses of penicillin, cefotaxime or ceftriaxone are effective for pneumonia due to strains with intermediate sen-
sitivity; vancomycin is added for highly resistant strains, especially for meningitis.

Aminopenicillins:

Amoxicillin (*Amoxil*, and others) — An oral semisynthetic penicillin similar to ampicillin, it is better absorbed and may cause less diarrhea. Amoxicillin is at least as effective as oral ampicillin for the treatment of most infections, with the exception of shigellosis. High doses (at least 3000 mg/day) have been successful in treating pneumococcal respiratory infections caused by strains with reduced susceptibility to penicillin.

Amoxicillin/Clavulanic Acid (*Augmentin*) — The ß-lactamase inhibitor, potassium clavulanate, extends amoxicillin’s spectrum of activity to include ß-lactamase-producing strains of *Staphylococcus aureus*, *Haemophilus influenzae*, *Moraxella catarrhalis* and many strains of enteric gram-negative bacilli, including anaerobes such as *Bacteroides* spp. This combination may be useful for oral treatment of bite wounds, otitis media, sinusitis and some lower respiratory tract and urinary tract infections, but it can cause a higher incidence of diarrhea and other gastrointestinal symptoms than amoxicillin alone, and less costly alternatives are available. An oral extended-release form of *Augmentin* (*Augmentin XR*) containing a higher content of amoxicillin in each tablet (1000 mg) has been successful in treating acute bacterial sinusitis and community-acquired pneumonia caused by strains of pneumococci with reduced susceptibility to penicillin, but high dose amoxicillin which costs much less can also be used.

Ampicillin (*Principen*, and others) — This semisynthetic penicillin is as effective as penicillin G in pneumococcal, streptococcal and meningococcal infections, and is also active against some strains of *Salmonella*, *Shigella*, *Escherichia coli* and *Haemophilus influenzae* and
many strains of *Proteus mirabilis*. The drug is not effective against penicillinase-producing staphylococci or β-lactamase-producing gram-negative bacteria. Rashes are more frequent with ampicillin than with other penicillins. Taken orally, ampicillin is less well absorbed than amoxicillin.

Ampicillin /Sulbactam (Unasyn) — A parenteral combination of ampicillin with the β-lactamase inhibitor sulbactam, which extends the antibacterial spectrum of ampicillin to include β-lactamase-producing strains of *Staphylococcus aureus* (but not those resistant to oxacillin), *Haemophilus influenzae*, *Moraxella catarrhalis*, *Neisseria* and many gram-negative bacilli, including *Bacteroides fragilis*, but not *Pseudomonas aeruginosa*, *Enterobacter* or *Serratia*. It may be useful for treatment of gynecological and intra-abdominal infections. Some strains of *Acinetobacter* resistant to all other antibiotics may respond to high doses of ampicillin/sulbactam in combination with polymyxins.

Penicillinase-Resistant Penicillins — The drugs of choice for treatment of infections caused by penicillinase-producing staphylococci, they are also effective against penicillin-sensitive pneumococci and Group A streptococci. For oral use, *cloxacillin* or *dicloxacillin* is preferred; for severe infections, a parenteral formulation of *nafcillin* or *oxacillin* should be used. *Methicillin* is no longer marketed in the US. Strains of *Staphylococcus aureus* or *epidermidis* that are resistant to these penicillins ("oxacillin-resistant") are also resistant to cephalosporins, and carbapenems. Infections caused by these strains should be treated with vancomycin, with or without rifampin and/or gentamicin, or with linezolid; complicated skin and soft tissue infections may also be treated with daptomycin. Neither ampicillin, amoxicillin, carbenicillin, piperacillin nor ticarcillin is effective against penicillinase-producing staphylococci.
Extended-Spectrum Penicillins:

Carbenicillin (Geocillin) — The oral indanyl ester of carbenicillin; it does not produce therapeutic blood levels, but can be used for treatment of urinary tract infections, including those due to susceptible gram-negative bacilli such as *Pseudomonas aeruginosa* that may be resistant to other drugs.

Piperacillin (Pipracil) — A penicillin for parenteral treatment of gram-negative bacillary infections. It is similar to ticarcillin in antibacterial activity, but covers a wider spectrum, particularly against *Klebsiella pneumoniae* and *Bacteroides fragilis*. Its *in vitro* activity against *Pseudomonas* is greater than that of ticarcillin, but increased clinical effectiveness in *Pseudomonas* infections has not been demonstrated. Piperacillin is also active against some gram-positive cocci, including streptococci and some strains of *Enterococcus*. For treatment of serious gram-negative infections, it should generally be used in combination with an aminoglycoside such as gentamicin, tobramycin or amikacin.

Piperacillin/Tazobactam (Zosyn) — A parenteral formulation combining piperacillin with tazobactam, a β-lactamase-inhibitor. The addition of the β-lactamase inhibitor extends the spectrum of piperacillin to include β-lactamase producing strains of staphylococci and some gram-negative bacilli, including *Bacteroides fragilis*. Infections caused by gram-negative bacilli that produce “extended spectrum” β-lactamase are often resistant to piperacillin/tazobactam, those that produce chromosomal β-lactamase are always resistant. The combination of the two drugs is no more active against *Pseudomonas aeruginosa* than piperacillin alone.

Ticarcillin (Ticar) — A penicillin similar to carbenicillin. Large parenteral doses of this semisynthetic penicillin can cure serious infections caused by susceptible strains of *Pseudomonas*, *Proteus* and some...
other gram-negative organisms. *Klebsiella* are generally resistant. Ticarcillin is also active against some gram-positive cocci, including streptococci and some strains of *Enterococcus*. It is often given together with another drug such as gentamicin, tobramycin or amikacin for treatment of serious systemic infections. It is less active than ampicillin, amoxicillin or piperacillin against strains of *Streptococcus pneumoniae* with reduced susceptibility to penicillin and against enterococci.

Ticarcillin/Clavulanic Acid (*Timentin*) — A parenteral preparation combining ticarcillin with potassium clavulanate, a β-lactamase inhibitor. The addition of the β-lactamase inhibitor extends the antibacterial spectrum of ticarcillin to include β-lactamase producing strains of *Staphylococcus aureus, Haemophilus influenzae*, and some enteric gram-negative bacilli, including *Bacteroides fragilis*. The combination is no more active against *Pseudomonas aeruginosa* than ticarcillin alone.

POLMYXINS B AND E (polymyxin B – various generics; polymyxin E – *Coly-Mycin*; colistimethate; colistin sulfate) — The polymyxins are used topically in combination with other antibiotics for treatment of infected wounds and otitis externa. They should generally not be used parenterally because safer and more effective alternatives are available. However, some strains of *Acinetobacter* are resistant to all other available antibiotics and infections due to those strains have been treated with polymyxin, sometimes combined with high doses of sulbactam (in the form of ampicillin/sulbactam), with some reports of benefit.

PYRAZINAMIDE — An antituberculosis drug now often used in the initial treatment regimen. Rifampin-isoniazid-pyrazinamide (*Rifater*) is a fixed-dose combination for treatment of tuberculosis.
QUINOLONES

Nalidixic Acid (NegGram, and others) — An oral drug active in vitro against many gram-negative organisms that commonly cause urinary tract infections. Development of resistance by initially susceptible strains is rapid, however, and clinical results are much less favorable than would be expected from sensitivity testing alone. Nalidixic acid can cause severe adverse effects, including visual disturbances, intracranial hypertension, and convulsions. Other drugs are generally preferred for treatment of urinary tract infections.

Cinoxacin (Cinobac, and others) — An oral drug similar to nalidixic acid for treatment of urinary tract infections.

QUINUPRISTIN/DALFOPRISTIN (Synercid) — Two streptogramin antibacterials marketed in a fixed-dose combination for parenteral use. The combination is active against vancomycin-resistant Enterococcus faecium (but not E. faecalis) as well as Staphylococcus aureus, Streptococcus pneumoniae and S. pyogenes. Adverse effects include frequent thrombophlebitis at the infusion site (it is best given through a central venous catheter) and arthralgias and myalgias. It has a number of drug interactions. The availability of linezolid and daptomycin as alternates have lead to infrequent use of quinupristin/dalfopristin.

RIFABUTIN (Mycobutin) — Similar to rifampin, rifabutin is used to prevent and treat tuberculosis and disseminated Mycobacterium avium infections in patients with AIDS. It has fewer drug interactions than rifampin.

RIFAMPIN (Rifadin, Rimactane) — A major drug for treatment of tuberculosis. To prevent emergence of resistant organisms, it should be used together with other antituberculosis drugs. It is sometimes used concurrently with other drugs for treatment of Mycobacterium avium infections in AIDS patients. Rifampin is also useful for prophylaxis in
close contacts of patients with sulfonamide-resistant meningococcal disease and for prophylaxis in children who are close contacts of patients with *Haemophilus influenzae* meningitis. Rifampin is a potent inducer of CYP3A enzymes and may increase the metabolism of the many drugs, particularly some protease inhibitors. **Rifampin-isoniazid-pyrazinamide** (*Rifater*) and **rifampin-isoniazid** (*Rifamate*) are fixed-dose combinations for treatment of tuberculosis.

RIFAPENTINE *(Priftin)* — A long-acting analog of rifampin used in the treatment of tuberculosis. Studies of its effectiveness are limited. Until more data become available, rifampin is preferred.

RIFAXIMIN *(Xifaxan)* — A non-absorbed oral antibiotic derived from rifampin, it is about as effective as ciprofloxacin for treatment of traveler’s diarrhea, which is mostly caused by *E. coli*. It is not effective against gastrointestinal infections associated with fever or blood in the stool or those caused by *Campylobacter jejuni*. It has fewer adverse effects and drug interactions than systemic antibiotics, but should not be taken during pregnancy. Hypersensitivity reactions have been reported.

SPECTINOMYCIN *(Troficin)* — A single-dose alternative for treatment of urogenital or anal gonorrhea. It is effective for penicillin-resistant infections and for patients who are allergic to penicillin. Spectinomycin is not effective against syphilis.

STREPTOMYCIN — See Aminoglycosides

SULFONAMIDES — Previously used for acute, uncomplicated urinary tract infections sulfonamides are now rarely used because of the increasing frequency of sulfonamide-resistance among gram-negative bacilli and the availability of fluoroquinolone and trimethoprim/sul-
famethoxazole. When used, a soluble oral sulfonamide such as sulfisoxazole (Gantrisin, and others) is preferred.

TELITHROMYCIN (*Ketek*) — A ketolide antibiotic, derived from erythromycin, it is approved for oral treatment of mild to moderate community-acquired pneumonia, acute exacerbations of chronic bronchitis and acute bacterial sinusitis in adults. Telithromycin has good activity against most strains of *S. pneumoniae* that are resistant to penicillin and macrolides (erythromycin, clarithromycin and azithromycin). It is also active against *M. catarrhalis, H. influenzae* and the atypical respiratory pathogens (*M. pneumoniae, Legionella pneumophilia* and *Chlamydia* spp.). Telithromycin can be an alternative to fluoroquinolones for treatment of respiratory infections, but is expensive and may cause transient visual disturbances. It is an inhibitor of CYP3A enzymes and can cause potentially dangerous increases of serum concentrations of simvastatin, lovastatin, atorvastatin, midazolam and other drugs. It should not be used in patients with myasthenia gravis because it may exacerbate attacks of that disease.

TETRACYCLINES — *Doxycycline* (*Vibramycin*, and others), *oxytetracycline* (*Terramycin*), and *minocycline* (*Minocin*, and others) are available in both oral and parenteral formulations; *tetracycline* and *demeclocycline* (*Declomycin*) are available only for oral use. Parenteral tetracyclines can cause severe liver damage, especially when given to patients with diminished renal function or in pregnancy. *Doxycycline* requires fewer doses and causes less gastrointestinal disturbance than other tetracyclines. It can be used for prophylaxis after *Bacillus anthracis* (anthrax) exposure. Doxycycline and other tetracyclines are effective in treating pneumonia caused by *Mycoplasma pneumoniae, Chlamydia pneumoniae* and *Legionella* species and are commonly used to treat Lyme disease in adults and urethritis, cervicitis, proctitis or pelvic inflammatory disease when caused by *Chlamydial* species. *Minocycline*
may be useful for prophylactic treatment of close contacts of patients with meningococcal infection, but it frequently causes vomiting and vertigo.

TIGECYCLINE (Tygacil) — The first glycylcycline, tigecycline is FDA-approved for parenteral treatment of complicated intra-abdominal infections and complicated skin and skin structure infections in adults. It has a broad spectrum of antimicrobial activity, including activity against methicillin-resistant *Staphylococcus aureus* (MRSA).

TOBRAMYCIN (Nebcin, and others) — See Aminoglycosides

TRIMETHOPRIM (Proloprim, and others) — An agent marketed only for oral treatment of uncomplicated urinary tract infections caused by gram-negative bacilli. Frequent use has the potential for producing organisms resistant not only to this drug but also to trimethoprim/sulfamethoxazole.

TRIMETHOPRIM/SULFAMETHOXAZOLE (Bactrim, Septra, and others) — A combination of a folic acid antagonist and a sulfonamide, useful especially for oral treatment of urinary tract infections, shigellosis, otitis media, traveler’s diarrhea, bronchitis, and *Pneumocystis carinii* pneumonia. An intravenous preparation is available for treatment of serious infections. Allergic reactions are common, especially in HIV-infected patients. It may occasionally produce elevation of serum creatinine, hyperkalemia and renal insufficiency.

TROLEANDOMYCIN (TAO) — See Macrolides

TROVAFLOXACIN (Trovan) — See Fluoroquinolones

VANCOMYCIN (Vancocin, and others) — An effective alternative to
the penicillins for endocarditis caused by *Streptococcus viridans* or *Enterococcus*, for severe staphylococcal infections, and for penicillin-resistant *S. pneumoniae* infections. An increasing number of strains of enterococci (especially *E. faecium*), however, are resistant to vancomycin. Some strains of *S. aureus* have reduced susceptibility to vancomycin or are highly resistant. Linezolid or daptomycin may be used to treat infections caused by these strains of enterococci or *S. aureus*. Vancomycin is the drug of choice for treatment of infections caused by oxacillin-resistant *Staphylococcus aureus* and *epidermidis*, but for strains that are oxacillin-sensitive, nafcillin or oxacillin are more effective. For serious infections caused by *S. aureus* or enterococci higher than the traditional doses of 15 mg/kg every 12 hours IV for adults with normal renal function are being advocated by some consultants, but improved efficacy of such regimens has not yet been demonstrated and when combined with the use of aminoglycosides such higher dose regimens are likely to increase the incidence of nephrotoxicity.

Oral treatment with vancomycin is effective in treating antibiotic-associated colitis due to *Clostridium difficile*, but metronidazole is generally preferred because the increasing use of oral vancomycin has probably promoted the emergence of vancomycin-resistant enterococci.
In many acute and most chronic infections, the choice of antimicrobial therapy can await the results of appropriate cultures and antimicrobial susceptibility tests. In acute life-threatening infections such as meningitis, pneumonia or bacteremia, however, and in other infections that have reached a serious stage, waiting 24 to 48 hours can be dangerous, and the choice of an antimicrobial agent for initial use must be based on tentative identification of the pathogen. Knowing the organisms most likely to cause infection in specific tissues, together with evaluation of gram-stained smears and familiarity with the antimicrobial susceptibility patterns of organisms prevalent in the hospital or community, permits a rational choice of initial treatment.

In the table below, bacteria, fungi, viruses and other pathogens are listed in estimated order of the frequency with which they cause acute infection, but these frequencies are subject to annual, seasonal and geographical variation. The order of pathogens may also vary depending on whether the infections are community or hospital-acquired, and whether or not the patient is immunosuppressed. This listing is based both on published reports and on the experience of Medical Letter consultants. Organisms not listed here may also be important causes of infection.

TABLE OF BACTERIA, FUNGI, AND SOME VIRUSES MOST LIKELY TO CAUSE ACUTE INFECTIONS

BLOOD (SEPTICEMIA)

Newborn Infants

1. *Streptococcus* Group B
2. *Escherichia coli* (or other gram-negative bacilli)
3. *Listeria monocytogenes*
4. *Staphylococcus aureus*
5. *Streptococcus pyogenes* (Group A)
7. *Streptococcus pneumoniae*
Children
1. *Streptococcus pneumoniae*
2. *Neisseria meningitidis*
3. *Staphylococcus aureus*
4. *Streptococcus pyogenes* (Group A)
5. *Haemophilus influenzae*
6. *Escherichia coli* (or other gram-negative bacilli)

Adults
1. *Escherichia coli* (or other enteric gram-negative bacilli)
2. *Staphylococcus aureus*
3. *Streptococcus pneumoniae*
4. Enterococcal spp.
5. Non-enteric gram-negative bacilli
 - (*Pseudomonas, Acinetobacter, Aeromonas*)
6. *Candida* spp. and other fungi
7. *Staphylococcus epidermidis*
8. *Streptococcus pyogenes* (Group A)
9. Other streptococci (non-Group A and not Lancefield-groupable)
11. *Neisseria meningitidis*
12. *Neisseria gonorrhoeae*
14. Mycobacteria
17. *Brucella* spp.

MENINGES
1. Viruses (enterovirus, mumps, herpes simplex, HIV, arbovirus, lymphocytic choriomeningitis [LCM] virus and others)
2. *Neisseria meningitidis*
3. *Streptococcus pneumoniae*
4. *Streptococcus* Group B (infants less than two months old)
5. *Escherichia coli* (or other gram-negative bacilli)
7. *Streptococcus pyogenes* (Group A)
Pathogens

8. *Staphylococcus aureus* (with endocarditis or after neurosurgery, brain abscess)
9. *Mycobacterium tuberculosis*
10. *Cryptococcus neoformans* and other fungi
11. *Listeria monocytogenes*
12. Enterococcal spp. (neonatal period)
13. *Treponema pallidum*
15. *Borrelia burgdorferi*
16. *Toxoplasma gondii*

BRAIN AND PARAMENINGEAL SPACES
1. Herpes simplex (encephalitis)
2. Anaerobic streptococci and/or *Bacteroides* spp. (cerebritis, brain abscess, and subdural empyema)
3. *Staphylococcus aureus* (cerebritis, brain abscess, epidural abscess)
4. *Haemophilus influenzae* (subdural empyema)
5. Arbovirus (encephalitis)
6. Mumps (encephalitis)
7. *Toxoplasma gondii* (encephalitis)
8. Human immunodeficiency virus (HIV)
9. *Mycobacterium tuberculosis*
10. *Nocardia* (brain abscess)
11. *Listeria monocytogenes* (encephalitis)
12. *Treponema pallidum*
13. *Cryptococcus neoformans* and other fungi
14. *Borrelia burgdorferi*
15. Other viruses (varicella-zoster [VZV], cytomegalovirus [CMV], Ebstein-Barr [EBV] and rabies)
16. *Mycoplasma pneumoniae*
17. *Taenia solium* (neurocysticercosis)
18. *Echinococcus* spp. (echinococcosis)
19. *Strongyloides stercoralis* hyperinfection
20. *Angiostrongylus cantonensis*
21. Free-living amoeba (*Naegleria, Acanthameoba* and *Balamuthia* spp.)

ENDOCARDIUM
1. *Staphylococcus aureus*
2. Viridans group of *Streptococcus*
3. Enterococcal spp.
4. *Streptococcus bovis*
5. *Staphylococcus epidermidis*
6. *Candida albicans* and other fungi
7. Gram-negative bacilli
8. *Streptococcus pneumoniae*
9. *Streptococcus pyogenes* (Group A)
10. *Corynebacterium* spp. (especially with prosthetic valves)
11. *Haemophilus, Actinobacillus, Cardiobacterium hominis* or *Eikenella* spp.

BONES (OSTEOMYELITIS)
1. *Staphylococcus aureus*
2. *Salmonella* spp. (or other gram-negative bacilli)
3. *Streptococcus pyogenes* (Group A)
4. *Mycobacterium tuberculosis*
5. Anaerobic streptococci (chronic)
6. *Bacteroides* spp. (chronic)

JOINTS
1. *Staphylococcus aureus*
2. *Streptococcus pyogenes* (Group A)
3. *Neisseria gonorrhoeae*
4. Gram-negative bacilli
5. *Streptococcus pneumoniae*
6. *Neisseria meningitidis*
7. *Haemophilus influenzae* (in children)
8. *Mycobacterium tuberculosis* and other *Mycobacteria*
9. Fungi
10. *Borrelia burgdorferi*

SKIN AND SUBCUTANEOUS TISSUES

Burns
1. *Staphylococcus aureus*
2. *Streptococcus pyogenes* (Group A)
3. *Pseudomonas aeruginosa* (or other gram-negative bacilli)
Skin infections
1. *Staphylococcus aureus*
2. *Streptococcus pyogenes* (Group A)
3. Dermatophytes
4. *Candida* spp. and other fungi
5. Herpes simplex or zoster
6. Gram-negative bacilli
7. *Treponema pallidum*
8. *Borrelia burgdorferi*
9. *Bartonella henselae* or *quintana*
10. *Bacillus anthracis*

Decubitus Wound infections
1. *Staphylococcus aureus*
2. *Escherichia coli* (or other gram-negative bacilli)
3. *Streptococcus pyogenes* (Group A)
4. Anaerobic streptococci
5. *Clostridia* spp.
7. *Bacteroides* spp.

Traumatic and Surgical Wounds
1. *Staphylococcus aureus*
2. Anaerobic streptococci
3. Gram-negative bacilli
5. *Streptococcus pyogenes* (Group A)

EYES (Cornea and Conjunctiva)
1. Herpes and other viruses
2. *Neisseria gonorrhoeae* (in newborn)
3. *Staphylococcus aureus*
4. *Streptococcus pneumoniae*
5. *Haemophilus influenzae* (in children), including biotype *aegyptius* (Koch-Weeks bacillus)
6. *Moraxella lacunata*
7. *Pseudomonas aeruginosa*
8. Other gram-negative bacilli
9. *Chlamydia trachomatis* (trachoma and inclusion conjunctivitis)
10. Fungi

EARS

Auditory Canal
1. *Pseudomonas aeruginosa* (or other gram-negative bacilli)
2. *Staphylococcus aureus*
3. *Streptococcus pyogenes* (Group A)
4. *Streptococcus pneumoniae*
5. *Haemophilus influenzae* (in children)
6. Fungi

Middle Ear
1. *Streptococcus pneumoniae*
2. *Haemophilus influenzae* (in children)
3. *Moraxella catarrhalis*
4. *Streptococcus pyogenes* (Group A)
5. *Staphylococcus aureus*
6. Anaerobic streptococci (chronic)
7. *Bacteroides* spp. (chronic)
8. Other gram-negative bacilli (chronic)
9. *Mycobacterium tuberculosis*

PARANASAL SINUSES
1. *Streptococcus pneumoniae*
2. *Haemophilus influenzae*
3. *Moraxella catarrhalis*
4. *Streptococcus pyogenes* (Group A)
5. Anaerobic streptococci (chronic sinusitis)
6. *Staphylococcus aureus* (chronic sinusitis)
7. *Klebsiella* spp. (or other gram-negative bacilli)
8. *Mucor* spp., *Aspergillus* spp. (especially in diabetics and immunosuppressed patients)

MOUTH
1. Herpes viruses
2. *Candida* spp.
Pathogens

3. *Leptotrichia buccalis* (Vincent’s infection)
5. Mixed anaerobes
6. *Treponema pallidum*
7. *Actinomyces*

THROAT
1. Respiratory viruses
2. *Streptococcus pyogenes* (Group A)
3. *Neisseria meningitidis* or *gonorrhoeae*
4. *Leptotrichia buccalis*
5. *Candida* spp.
6. *Corynebacterium diptheriae*
7. *Bordetella pertussis*
8. *Haemophilus influenzae*
9. *Fusobacterium necrophorum*

LARYNX, TRACHEA, AND BRONCHI
1. Respiratory viruses
2. *Streptococcus pneumoniae*
3. *Haemophilus influenzae*
4. *Streptococcus pyogenes* (Group A)
5. *Corynebacterium diptheriae*
6. *Staphyloccocus aureus*
7. Gram-negative bacilli
8. *Fusobacterium necrophorum*

PLEURA
1. *Streptococcus pneumoniae*
2. *Staphyloccocus aureus*
3. *Haemophilus influenzae*
4. Gram-negative bacilli
5. Anaerobic streptococci
7. *Streptococcus pyogenes* (Group A)
8. *Mycobacterium tuberculosis*
10. Fungi
11. *Fusobacterium necrophorum*
LUNGS

Pneumonia
1. Respiratory viruses (influenza virus A and B, adenovirus, respiratory syncytial virus, parainfluenza virus, rhinovirus, enteroviruses, cytomegalovirus, Epstein-Barr virus, varicella-zoster virus, measles virus, herpes simplex virus, hantavirus and coronavirus [SARS])
2. *Mycoplasma pneumoniae*
3. *Streptococcus pneumoniae*
4. *Haemophilus influenzae*
5. Anaerobic streptococci, fusospirochetes
7. *Staphylococcus aureus*
8. *Klebsiella* spp. (or other gram-negative bacilli)
9. *Legionella pneumophila*
10. *Chlamydia pneumoniae* (TWAR strain)
11. *Streptococcus pyogenes* (Group A)
13. *Mycobacterium tuberculosis*
14. *Pneumocystis carinii*
15. Fungi (especially *Aspergillus* species in immunosuppressed patients)
16. *Moraxella catarrhalis*
17. *Legionella micdadei* (*L. pittsburgensis*)
18. *Chlamydia psittaci*
19. *Fusobacterium necrophorum*
22. *Rhodococcus equi*
23. *Bacillus anthracis* (mediastinitis)
24. *Yersinia pestis*

Abscess
1. Anaerobic streptococci
2. *Bacteroides* spp.
3. *Staphylococcus aureus*
4. *Klebsiella* spp. (or other gram-negative bacilli)
5. *Streptococcus pneumoniae*
Pathogens

6. Fungi

GASTROINTESTINAL TRACT
1. Gastrointestinal viruses
2. *Campylobacter jejuni*
4. *Escherichia coli*
5. *Shigella* spp.
6. *Yersinia enterocolitica*
7. *Entamoeba histolytica*
8. *Giardia lamblia*
9. *Staphylococcus aureus*
10. *Vibrio cholerae*
11. *Vibrio parahaemolyticus*
12. Herpes simplex (anus)
13. *Treponema pallidum* (rectum)
14. *Neisseria gonorrhoeae* (rectum)
16. *Clostridium difficile*
17. *Cryptosporidium parvum*
18. Cytomegalovirus (CMV)
19. Human immunodeficiency virus (HIV)
20. *Mycobacterium avium* complex
21. *Helicobacter pylori*
22. *Tropheryma whippelii*

URINARY TRACT
1. *Escherichia coli* (or other gram-negative bacilli)
2. *Staphylococcus aureus* and *epidermidis*
3. *Neisseria gonorrhoeae* (urethra)
4. Enterococcal spp.
5. *Candida* spp.
6. *Chlamydia* spp. (urethra)
7. *Treponema pallidum* (urethra)
8. *Trichomonas vaginalis* (urethra)
9. *Ureaplasma urealyticum*
FEMALE GENITAL TRACT

Vagina
1. *Trichomonas vaginalis*
2. *Candida* spp.
3. *Neisseria gonorrhoeae*
4. *Streptococcus pyogenes* (Group A)
5. *Gardnerella vaginalis* and associated anaerobes
6. *Treponema pallidum*

Uterus
1. Anaerobic streptococci
2. *Bacteroides* spp.
3. *Neisseria gonorrhoeae* (cervix)
5. *Escherichia coli* (or other gram-negative bacilli)
6. Herpes simplex virus, type II (cervix)
7. *Streptococcus pyogenes* (Group A)
8. *Streptococcus*, Groups B and C
9. *Treponema pallidum*
10. *Actinomyces* spp. (most common infection of intrauterine devices)
11. *Staphylococcus aureus*
12. Enterococcal spp.
13. *Chlamydia trachomatis*
14. *Mycoplasma hominis*

Fallopian Tubes
1. *Neisseria gonorrhoeae*
2. *Escherichia coli* (or other gram-negative bacilli)
3. Anaerobic streptococci
5. *Chlamydia trachomatis*

MALE GENITAL TRACT

Seminal Vesicles
1. Gram-negative bacilli
2. *Neisseria gonorrhoeae*
Pathogens

Epididymis
1. *Chlamydia*
2. Gram-negative bacilli
3. *Neisseria gonorrhoeae*
4. *Mycobacterium tuberculosis*

Prostate Gland
1. Gram-negative bacilli
2. *Neisseria gonorrhoeae*

PERITONEUM
1. Gram-negative bacilli
2. Enterococcal spp.
4. Anaerobic streptococci
5. *Clostridia* spp.
6. *Streptococcus pneumoniae*
7. *Streptococcus* Group B
New drugs for bacterial infections and new information about older drugs continue to become available. Empirical treatment of some common bacterial infections is discussed below. A table listing the drugs of choice and alternatives for each pathogen begins on page 55. These recommendations are based on results of susceptibility studies, clinical trials and the opinions of Medical Letter consultants. Local resistance patterns should be taken into account. Trade names are listed on page 61.

INFECTIONS OF SKIN, SOFT TISSUE AND BONE

CELLULITIS — Uncomplicated skin and skin structure infections in immunocompetent patients are most commonly due to *Staphylococcus aureus*, *Streptococcus pyogenes* (Group A), or *Streptococcus agalactiae* (Group B). Complicated skin and skin structure infections, such as occur in patients with burns, diabetes, infected decubitus ulcers and traumatic or surgical wound infections, are more commonly due to gram-negative bacilli, including *Escherichia coli* and *Pseudomonas aeruginosa*. Group A *streptococci* or *Clostridium* spp., with and without other anaerobes, can cause fulminant soft tissue infection and necrosis, particularly in patients with diabetes.

For **uncomplicated** infections, an anti-staphylococcal penicillin such as dicloxacillin or a first-generation cephalosporin such as cephalexin would be a reasonable choice. If the patient requires hospitalization, the same classes of drugs (cefazolin, nafcillin) could be given IV. Clindamycin or a fluoroquinolone with good activity against gram-positive organisms (levofloxacin, moxifloxacin or gatifloxacin) would be rea-
Choice of Antibacterial Drugs

Reasonable choices for patients who are allergic to penicillin (HB Fung et al, Drugs 2003; 63:1459).

Methicillin-resistant *Staphylococcus aureus* (MRSA), an increasing cause of community-onset infections, should be considered if the patient was previously colonized with MRSA, has a history of recent hospitalization, has a delayed response to therapy, or is in a geographic area of high prevalence. Vancomycin is the drug of choice for treatment of severe infections due to MRSA. Linezolid or daptomycin (Medical Letter 2004; 46:11) are reasonable alternatives. Many community-acquired strains of MRSA can also be treated with clindamycin, trimethoprim-sulfamethoxazole or a fluoroquinolone with good gram-positive coverage (levofloxacin, gatifloxacin or moxifloxacin).

For complicated infections, piperacillin/tazobactam, ticarcillin/clavulanate, imipenem or meropenem would be reasonable empiric monotherapy; in severely ill patients addition of vancomycin or linezolid to treat MRSA should be considered. If Group A streptococcus is the cause, the combination of clindamycin and penicillin should be used (DL Stevens, Curr Infect Dis Report 2003; 5:379). Surgical debridement is essential to the management of necrotizing skin and skin structure infections (BJ Childers et al, Am Surg 2002; 68:109).

Bone and Joint — *S. aureus* is the most common cause of osteomyelitis. *Streptococcus pyogenes* is another possible pathogen. *Salmonella* spp. can cause osteomyelitis in patients with sickle cell disease, and other gram-negative bacteria (*E. coli, Pseudomonas*) can also occur, particularly in patients who have had orthopedic procedures. Infections of the feet in diabetic patients often involve both bone and soft tissue and are usually polymicrobial, including both aerobic and anaerobic bacteria.

Septic arthritis in young, sexually active patients is frequently due to *Neisseria gonorrhoeae*. *S. aureus* or *S. pyogenes*, and gram-negative bac-
teria can also cause septic arthritis (I Garcia-De La Torre, Rheum Dis Clin North Am 2003; 29:61).

For treatment of osteomyelitis, IV administration of an anti-staphylococcal penicillin such as oxacillin or a first-generation cephalosporin such as cefazolin would be appropriate. Ceftriaxone would be a reasonable first choice for empiric treatment of a joint infection to include coverage for \textit{S. aureus} and \textit{N. gonorrhoeae}. For both bone and joint infections, IV penicillin or ceftriaxone can be used to treat \textit{Streptococcus} spp. If MRSA is the pathogen, vancomycin or linezolid (if the patient cannot take vancomycin) should be used. Ceftriaxone, ceftazidime or ciprofloxacin would be a good option for bone and joint infections due to gram-negative bacteria.

MENINGITIS

The organisms most commonly responsible for community-acquired bacterial meningitis in children and adults are \textit{Streptococcus pneumoniae} (pneumococcus) and \textit{Neisseria meningitidis}. Meningitis due to \textit{H. influenzae} type b in children has decreased markedly as a result of immunization. Enteric gram-negative bacteria cause meningitis especially in neonates, the elderly, and in those who have had recent neurosurgery or are immunosuppressed. Group B streptococcus often causes meningitis in neonates. \textit{Listeria monocytogenes} may be the cause in pregnant women and newborns, and also in the elderly or immunosuppressed (X Sáez-Llorens and GH McCracken Jr, Lancet 2003; 361:2139).

For treatment of meningitis in adults and in children more than two months old, pending results of cultures, high-dose ceftriaxone or cefotaxime is generally recommended, plus vancomycin to cover cephalosporin-resistant pneumococci. Vancomycin in usual doses may not reach effective levels in cerebrospinal fluid and clinical response should be carefully monitored; some Medical Letter consultants have used 4 grams per day to treat meningitis. Vancomycin should be stopped
if the etiologic agent proves to be susceptible to a third-generation cephalosporin or penicillin. For treatment of nosocomial meningitis, vancomycin and a cephalosporin with good activity against *Pseudomonas* such as ceftazidime are appropriate; if *Pseudomonas* is confirmed, addition of an aminoglycoside such as tobramycin, gentamicin or amikacin is recommended. Meningitis due to *Listeria* should be treated with ampicillin, with or without gentamicin.

Neonatal meningitis is most often caused by group B or other streptococci, gram-negative enteric organisms or *Listeria*. For meningitis in the first two months of life, while waiting for the results of cultures and susceptibility tests, many Medical Letter consultants use ampicillin plus cefotaxime, with or without gentamicin.

Ceftriaxone or cefotaxime is sometimes used to treat meningitis in *penicillin-allergic* patients, but such patients may also have allergic reactions to cephalosporins. Vancomycin with or without rifampin should be added to cover resistant pneumococci. When allergy prevents the use of a cephalosporin, chloramphenicol can be given for initial treatment, but may not be effective if the pathogens are enteric gram-negative bacilli or *Listeria*, or in some patients with pneumococcal meningitis. For enteric gram-negative bacilli, aztreonam could be used. Trimethoprim-sulfamethoxazole can be used for treatment of *Listeria* meningitis in patients allergic to penicillin.

Corticosteroids, usually dexamethasone (*Decadron*, and others), given before or at the same time as the first dose of antibiotics have been reported to decrease the incidence of hearing loss and other neurological complications in children with meningitis (PK Coyle, Arch Neurol 1999; 56:796; T Duke et al, Expert Opin Pharmacother 2003; 4:1227). In addition, a recent study in 301 adults with bacterial meningitis found that dexamethasone, given 15-20 minutes before the first dose of vancomycin and continued every 6 hours for four days, was associated with improved
Choice of Antibacterial Drugs

outcome and decreased mortality (J de Gans et al, N Engl J Med 2002; 347:1549). The benefits were most pronounced in patients with pneumococcal meningitis. All pneumococcal isolates in this study were susceptible to penicillin; a theoretical downside to steroid use in meningitis is that it can decrease antibiotic penetration into the CNS, particularly of vancomycin (V Abril and E Ortega, N Engl J Med 2003; 348:954). A small study in adult patients with bacterial meningitis found that ceftriaxone levels in the CNS were similar in patients who received dexamethasone compared to those who did not (AC Buke et al, Int J Antimicrob Agents 2003; 21:452). A study in animals found that dexamethasone decreases vancomycin levels in the CSF when used alone, but not when vancomycin is combined with rifampin (J Martinez-LaCasa et al, J Antimicrob Chemother 2002; 49:507).

PNEUMONIA

The “atypical” pathogens Mycoplasma pneumoniae and Chlamyphila pneumoniae (formerly Chlamydia pneumoniae) probably cause most cases of community-acquired bacterial pneumonia. Legionella, another atypical organism, is less common. Among hospitalized patients with community-acquired bacterial pneumonia, S. pneumoniae probably is the most common pathogen. Other bacterial pathogens include H. influenzae, Klebsiella pneumoniae, and occasionally other gram-negative bacilli and anaerobic mouth organisms. Hospital-acquired (nosocomial) pneumonia is often caused by gram-negative bacilli, especially P. aeruginosa, Klebsiella spp., Enterobacter spp., Serratia spp., and Acinetobacter spp.; it can also be caused by S. aureus.

Guidelines for the treatment of pneumonia have recently been published (Treatment Guidelines 2003; 1:83; LA Mandell et al, Clin Infect Dis 2003; 37:1405). In ambulatory patients, an oral macrolide (erythromycin, azithromycin or clarithromycin), doxycycline, or a fluoroquinolone
with good anti-pneumococcal activity such as levo-, gati-, gemi- or moxi-floxacin is generally used for otherwise healthy adults. Pneumococci may, however, be resistant to macrolides (JR Lonks et al, J Antimicrob Chemother 2002; 50 suppl 2:87) and to doxycycline, especially if they are resistant to penicillin. For older patients or those with co-morbid illness, a fluoroquinolone may be a better choice. Fluoroquinolone-resistant pneumococci have also been described rarely (MR Jacobs et al, J Antimicrob Chemother 2003; 52:229).

In community-acquired pneumonia requiring hospitalization, ceftriaxone or cefotaxime, plus a macrolide (erythromycin, azithromycin or clarithromycin) is recommended pending culture results (RB Brown et al, Chest 2003; 123:1503). Alternatively, a fluoroquinolone with good activity against *S. pneumoniae* (levo-, gati-, gemi- or moxifloxacin) can be substituted. If aspiration pneumonia is suspected, metronidazole or clindamycin can be added. Moxifloxacin, which has anaerobic activity, is a reasonable alternative.

In treating pneumococcal pneumonia due to strains with intermediate degrees of penicillin resistance (minimal inhibitory concentration [MIC] ≤2 µg/mL), ceftriaxone, cefotaxime, or high doses of either IV penicillin (12 million units daily for adults) or oral amoxicillin can be used. For highly resistant strains (MIC >2 µg/mL), an IV fluoroquinolone (levofloxacin, gatifloxacin or moxifloxacin), vancomycin or linezolid may be required, and should be added in severely ill patients (such as those requiring admission to an ICU) and those not responding to a β-lactam.

For initial treatment of hospital-acquired pneumonia, in which antimicrobial resistance is frequent and can emerge during treatment, Medical Letter consultants would use piperacillin/tazobactam, ticarcillin/clavulanate or a carbapenem (imipenem or meropenem), all of which have broad gram-positive, gram-negative and anaerobic activity, or cefepime,
which has broader activity than ceftriaxone or cefotaxime against gram-negative organisms. In severely ill patients, an aminoglycoside (tobramycin, gentamicin or amikacin) or ciprofloxacin should be added to improve *Pseudomonas* coverage. Addition of vancomycin or linezolid should be considered in hospitals where MRSA is common.

INFECTIONS OF THE GENITOURINARY TRACT

URINARY TRACT INFECTION — Acute uncomplicated cystitis in women can be effectively and inexpensively treated, before the infecting organism is known, with a three-day course of oral trimethoprim-sulfamethoxazole. In areas where the prevalence of *E. coli* resistant to trimethoprim-sulfamethoxazole exceeds 15% to 20%, a fluoroquinolone can be substituted (K Gupta et al, Ann Intern Med 2001; 135:41). Other alternatives include 5- to 7-day regimens of nitrofurantoin, or a single dose of fosfomycin (TM Hooton, Int J Antimicrob Agents 2003; 22:S65; SD Fihn, N Engl J Med 2003; 349:259). Based on the results of susceptibility testing, nitrofurantoin, amoxicillin or a cephalosporin can be used to treat urinary tract infections in pregnant women (LE Nicolle, Int J Antimicrob Agents 2003; 22:1); nitrofurantoin should not be given near term or during labor or delivery because it can cause hemolytic anemia in the newborn.

Acute uncomplicated pyelonephritis can often be managed with a 7-day course of an oral fluoroquinolone. Urinary tract infections that recur after use of antimicrobial agents or are acquired in hospitals or nursing homes are more likely to be due to antibiotic-resistant gram-negative bacilli, *S. aureus* or enterococci. A fluoroquinolone, oral amoxicillin/clavulanate or an oral third-generation cephalosporin such as cefpodoxime, cefdinir or ceftibuten can be useful in treating such infections in outpatients. In hospitalized patients with urinary tract infections, treatment with a third-
Choice of Antibacterial Drugs

generation cephalosporin, a fluoroquinolone, ticarcillin/clavulanate, piperacillin/tazobactam, imipenem or meropenem is recommended, sometimes together with an aminoglycoside such as gentamicin, especially in patients with sepsis syndromes.

PROSTATITIS — Acute bacterial prostatitis may be due to E. coli, Klebsiella spp., Proteus mirabilis, P. aeruginosa, or Enterococcus faecalis (HS Gurunadha Rao Tunuguntla and CP Evans, Prostate Cancer Prostatic Dis 2002; 5:172), but a bacterial pathogen is often not identified. Chronic prostatitis, although often due to unknown causes, may be caused by the same bacteria as acute prostatitis, or by S. aureus and coagulase-negative staphylococci. Sexually transmitted organisms such as C. trachomatis, Ureaplasma urealyticum and N. gonorrhoeae can also cause chronic prostatitis (JN Krieger et al, Urology 2002; 60 suppl 6A:8).

An oral fluoroquinolone with activity against Pseudomonas (ciprofloxacin, levofloxacin) is a reasonable choice for initial treatment of acute bacterial prostatitis in a patient who does not require hospitalization. For more severe disease, an IV fluoroquinolone, third-generation cephalosporin, aminoglycoside or trimethoprim-sulfamethoxazole may be used. Chronic bacterial prostatitis is generally treated with a long (4- to 12-week) course of an oral fluoroquinolone or trimethoprim-sulfamethoxazole (JE Fowler, Jr, Urology 2002; 60 suppl 6A:24).

INTRA-ABDOMINAL INFECTIONS

Most intra-abdominal infections, such as cholangitis and diverticulitis, are due to enteric gram-negative organisms, most commonly E. coli, but also Klebsiella or Proteus species. Enterococci and anaerobes are also common. Loss of normal flora, such as occurs in hospitalized patients,
leads to an increased risk of infections due to *Pseudomonas* spp. and *Candida*. Many intra-abdominal infections, particularly abscesses, are polymicrobial.

For intra-abdominal infections, treatment with cefoxitin, cefotetan, piperacillin/tazobactam, ticarcillin/ clavulanate, ampicillin/sulbactam or ertapenem would be a reasonable first choice (JS Solomkin et al, Clin Infect Dis 2003; 37:997). Ciprofloxacin plus metronidazole for anaerobic coverage could be used in patients allergic to ß-lactams. When the source of bacteremia is thought to be the biliary tract, some clinicians would use piperacillin/tazobactam or ampicillin/sulbactam, each with or without an aminoglycoside. In severely ill patients and those with prolonged hospitalization, treatment should include coverage for *Pseudomonas*; an antipseudomonal penicillin (ticarcillin/clavulanate, piperacillin/tazobactam), imipenem, meropenem, ceftazidime or cefepime, each plus metronidazole, would be a reasonable choice; an aminoglycoside could be added to any of these regimens.

SEPSIS SYNDROME

For treatment of sepsis syndromes, the choice of drugs should be based on the probable source of infection, gram-stained smears of appropriate clinical specimens and the immune status of the patient. The choice should also reflect local patterns of bacterial resistance.

A third- or fourth-generation cephalosporin (cefotaxime, ceftriaxone, cefepime or ceftazidime), piperacillin/tazobactam, ticarcillin/clavulanate, imipenem or meropenem, or aztreonam can be used to treat sepsis caused by most strains of gram-negative bacilli. Ceftazidime has less activity against gram-positive cocci. Cephalosporins other than ceftazidime and cefepime have limited activity against *P. aeruginosa*.
Choice of Antibacterial Drugs

Piperacillin/tazobactam, ticarcillin/clavulanate, imipenem and meropenem are active against most strains of *P. aeruginosa* and are active against anaerobes. Aztreonam is active against many strains of *P. aeruginosa* but has no activity against gram-positive bacteria or anaerobes.

For initial treatment of life-threatening sepsis in adults, Medical Letter consultants recommend either a third- or fourth-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidine or cefepime), piperacillin/tazobactam, imipenem or meropenem, each together with an aminoglycoside (gentamicin, tobramycin or amikacin). When MRSA or methicillin-resistant *S. epidermidis* are suspected, vancomycin (alone or with gentamicin and/or rifampin) is often added. When bacterial endocarditis is suspected and therapy must be started before the pathogen is identified, a combination of ceftriaxone and vancomycin can be used; some Medical Letter consultants would also add gentamicin.

NEUTROPENIC FEVER — For suspected bacteremia in neutropenic patients, ceftazidime, imipenem, meropenem or cefepime, each alone or in more seriously ill patients with an aminoglycoside (gentamicin, tobramycin or amikacin), would be reasonable first choices (H Link et al, Ann Hematol 2003; 82, suppl 2:S105; WT Hughes et al, Clin Infect Dis 2002; 34:730). Piperacillin/tazobactam or ticarcillin/clavulanate, either combined with amikacin, may be equally effective. Addition of vancomycin may be necessary for treatment of neutropenic patients who remain febrile despite antibiotics or who develop bacteremia caused by methicillin-resistant staphylococci or penicillin-resistant viridans streptococci. Studies in low-risk hospitalized adults show that when neutropenia is expected to last less than 10 days, high-dose oral ciprofloxacin with amoxicillin/clavulanate is as effective as intravenous ceftazidime or ceftriaxone plus amikacin (A Koh and PA Pizzo, Cancer Invest 2002; 20:420).
ANTIBACTERIAL RESISTANCE

MULTIPLE-ANTIBIOTIC-RESISTANT ENTEROCOCCI — Many Enterococcus spp. are now resistant to penicillin and ampicillin, gentamicin or streptomycin or both, and to vancomycin. Some of these strains are susceptible in vitro to chloramphenicol, doxycycline or rarely to fluoroquinolones, but clinical results with these drugs have been variable. Linezolid and daptomycin are active against many gram-positive organisms, including both Enterococcus faecium and Enterococcus faecalis (JW Chien et al, Clin Infect Dis 2000; 30:146); resistance has been rare (AH Mutnick et al, Ann Pharmacother 2003; 37:769; Medical Letter 2004; 46:11). Quinupristin/dalfopristin is active against most strains of vancomycin-resistant E. faecium, but not E. faecalis (DJ Winston et al, Clin Infect Dis 2000; 30:790). Polymicrobial surgical infections that include antibiotic-resistant enterococci may respond to antibiotics aimed at the other organisms. When antibiotic-resistant enterococci cause endocarditis, surgical replacement of the infected valve may be required. Urinary tract infections caused by resistant enterococci may respond nevertheless to ampicillin or amoxicillin, which reach very high concentrations in urine; nitrofurantoin, fosfomycin, or doxycycline can also be used.

STAPHYLOCOCCUS AUREUS WITH REDUCED SUSCEPTIBILITY TO VANCOMYCIN — Staphylococcus aureus isolates with decreased susceptibility to vancomycin are uncommon but are increasingly being reported (A Van Griethuysen et al, J Clin Microbiol 2003; 41:2487; K Sieradzki et al, J Clin Microbiol 2003; 41:1687; MMWR Morb Mortal Wkly Rep 2002; 51:565). Many of these isolates, however, can still be treated with high-dose vancomycin. Recently the vanA gene, which encodes for vancomycin resistance in enterococci, has been identified in rare isolates of MRSA (S Chang et al, N Engl J Med 2003; 348:1342; MMWR Morb Mortal Wkly Rep 2002; 51:902). These van-
comycin-resistant MRSA (VRSA) have generally remained susceptible to trimethoprim-sulfamethoxazole, as well as to linezolid and daptomycin. It is not yet clear how frequently or easily this mode of resistance will occur; to date there are only two isolates (AP Johnson and N Woodford, J Antimicrob Chemother 2002; 50:621). Susceptibility testing must be used to guide therapy.

COMMUNITY-ACQUIRED MRSA — Community-acquired MRSA is a growing problem in the US. It has recently been implicated in more than 12,000 infections in some prison systems; infections were mostly skin and soft tissue (MMWR Morb Mortal Wkly Rep 2003; 52:992). Community-acquired strains often remain susceptible to drugs such as trimethoprim-sulfamethoxazole and clindamycin; nosocomial strains do not. Treatment should be guided by susceptibility tests.

ANTIBIOTIC-RESISTANT GRAM-NEGATIVE BACILLI — In some hospitals, gram-negative bacilli have become increasingly resistant to aminoglycosides, third-generation cephalosporins and aztreonam; these strains may be susceptible to imipenem, meropenem, ertapenem, piperacillin/tazobactam or trimethoprim-sulfamethoxazole. Of particular concern are multi-drug resistant strains of *Pseudomonas* and *Acinetobacter* (J Quale et al, Clin Infect Dis 2003; 37:214). Resistance is also increasing in some community-acquired organisms such as *Salmonella* spp. and *Shigella* spp. Susceptibility testing and resistance patterns within the region, as reported by public health laboratories, should be used to guide therapy.
Choice of Antibacterial Drugs

<table>
<thead>
<tr>
<th>Infecting Organism</th>
<th>Drug of First Choice†</th>
<th>Alternative Drugs†</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAM-POSITIVE COCCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus</td>
<td>endocarditis or other severe infection: penicillin G or ampicillin + gentamicin or streptomycin<sup>2</sup></td>
<td>vancomycin + gentamicin or streptomycin<sup>2</sup>; linezolid; daptomycin; quinupristin/dalfopristin<sup>4</sup></td>
</tr>
<tr>
<td></td>
<td>uncomplicated urinary tract infection: ampicillin or amoxicillin</td>
<td>nitrofurantoin; a fluoroquinolone<sup>6</sup>; fosfomycin</td>
</tr>
<tr>
<td>Staphylococcus aureus or epidermidis</td>
<td>a penicillinase-resistant penicillin<sup>6</sup></td>
<td>a cefalosphinor<sup>7,8</sup>; vancomycin; imipenem or meropenem; clindamycin; linezolid; daptomycin<sup>3</sup>; a fluoroquinolone<sup>5</sup></td>
</tr>
<tr>
<td>methicillin-susceptible</td>
<td>vancomycin + gentamicin + rifampin</td>
<td>linezolid; daptomycin<sup>3</sup>; a fluoroquinolone<sup>5</sup>; quinupristin/dalfopristin; a tetracycline<sup>10</sup>; trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td>methicillin-resistant<sup>9</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus pyogenes (group A<sup>11</sup>) and groups C and G</td>
<td>penicillin G or V<sup>12</sup></td>
<td>clindamycin; erythromycin; a cefalosphinor<sup>7,8</sup>; vancomycin; clarithromycin<sup>13</sup>; azithromycin; linezolid; daptomycin<sup>3</sup></td>
</tr>
</tbody>
</table>

* Resistance may be a problem; susceptibility tests should be used to guide therapy.
† Trade names are listed on page 61.
1. Disk sensitivity testing may not provide adequate information; β-lactamase assays, “E” tests and dilution tests for susceptibility should be used in serious infections.
2. Aminoglycoside resistance is increasingly common among enterococci; treatment options include ampicillin 2 g IV q4h, continuous infusion of ampicillin, a combination of ampicillin plus a fluoroquinolone, or a combination of ampicillin, imipenem and vancomycin.
3. Daptomycin should not be used to treat pneumonia.
4. Quinupristin/dalfopristin is not active against *Enterococcus faecalis*.
5. Among the fluoroquinolones, levo-, gatif- and moxifloxacin have excellent in vitro activity against *S. pneumoniae*, including penicillin- and cephalosporin-resistant strains. Levofloxacin, gatifloxacin and moxifloxacin also have good activity against many strains of *S. aureus*, but resistance has become frequent among methicillin-resistant strains. Ciprofloxacin has the greatest activity against *Pseudomonas aeruginosa*. For urinary tract infections, norfloxacin, lomefloxacin or enoxacin can be used. For tuberculosis, levofloxacin, ofloxacin, gatifloxacin, moxifloxacin or ofloxacin could be used. Ciprofloxacin, ofloxacin, levofloxacin, moxifloxacin and gatifloxacin are available for IV use. None of these agents is recommended for children or pregnant women.
6. For oral use against staphylococci, cloxacillin or dicloxacillin is preferred; for severe infections, a parenteral formulation of nafcillin or oxacillin should be used. Ampicillin, amoxicillin, carbenicillin, ticarcillin and piperacillin are not effective against penicillinase-producing staphylococci. The combinations of clavulanate with amoxicillin or ticarcillin, sulbactam with ampicillin, and tazobactam with piperacillin may be active against these organisms.
7. Cephalosporins have been used as alternatives to penicillins in patients allergic to penicillins, but such patients may also have allergic reactions to cephalosporins.
8. For parenteral treatment of staphylococcal or non-enterococcal streptococcal infections, a first-generation cephalosporin such as cefazolin can be used. For oral therapy, cephalaxin or cephadine can be used. The second-generation cephalosporins cefamandole, cefprozil, cefuroxime, cefotetan, cefoxitin and loracarbef are more active than the first-generation drugs against gram-negative bacteria. Cefuroxime is active against ampicillin-resistant strains of *H. influenzae*. Cefotaxim and cefotetan are the most active of the cephalosporins against *β*-fragile, but cefotetan has been associated with prothrombin deficiency. The third-generation cephalosporins cefotaxime, cefoperazone, cefixime, ceftriaxone and ceftazidime and the "fourth-generation" cefepime have greater activity than the second-generation drugs against enteric gram-negative bacilli. Ceftriaxone has poor activity against many gram-positive cocci and anaerobes, and ceftazidime has poor activity against penicillin-resistant *S. pneumoniae*. Cefepime has in vitro activity against gram-positive cocci similar to ceftaxime and ceftriaxone and somewhat greater activity against enteric gram-negative bacilli. The activity of cepfatrzime against *Pseudomonas aeruginosa* is similar to that of ceftazidime. Cefepime, cefepoxide, ceftriaxone, cefitabint and cefditoren are oral cephalosporins with more activity than second-generation cephalosporins against facultative gram-negative bacilli; they have no useful activity against anaerobes or *P. aeruginosa*, and ceftazidime and ceftepime have no useful activity against staphylococci. With the exception of cefepirazezone (which, like cefamandole, can cause bleeding), cefatrzime and cefepime, the activity of all currently available cephalosporins against *P. aeruginosa* is poor or inconsistent.
9. Many strains of coagulae-positive and coagulae-negative staphylococci are resistant to penicillinase-resistant penicillins; these strains are also resistant to cephalosporins, imipenem and meropenem, and are often resistant to fluoroquinolones, trimethoprim-sulfamethoxazole and clindamycin. Community-acquired MRSA often is susceptible to clindamycin and trimethoprim-sulfamethoxazole.
10. Tetracyclines are generally not recommended for pregnant women or children less than 8 years old.
11. For serious soft-tissue infection due to group A streptococci, clindamycin may be more effective than penicillin. Group A streptococci may, however, be resistant to clindamycin; therefore, some Medical Letter consultants suggest using both clindamycin and penicillin, with or without IV immune globulin, to treat serious soft-tissue infections. Surgical debridement is usually needed for necrotizing soft tissue infections due to Group A streptococci. Group A streptococci may also be resistant to erythromycin, azithromycin and clarithromycin.
12. Penicillin V (or amoxicillin) is preferred for oral treatment of infections caused by non-penicillinase-producing streptococci. For initial therapy of severe infections, penicillin G, administered parenterally, is first choice. For somewhat longer action in less severe infections due to group A streptococci, pneumococci or *Pneumocystis pallidum*, procaine penicillin G, an IM formulation, can be given once or twice daily, but is seldom used now. Benzathine penicillin G, a slowly absorbed preparation, is usually given in a single monthly injection for prophylaxis of rheumatic fever, once for treatment of Group A streptococcal pharyngitis and once or more for treatment of syphilis.
Choice of Antibacterial Drugs

Infecting Organism

<table>
<thead>
<tr>
<th>Streptococcus, group B</th>
<th>penicillin G or ampicillin</th>
<th>a cephalosporin<sup>7,8</sup>; vancomycin; daptomycin<sup>3</sup>; erythromycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus, viridans group<sup>1</sup></td>
<td>penicillin G ± gentamicin</td>
<td>a cephalosporin<sup>7,8</sup>; vancomycin</td>
</tr>
<tr>
<td>Streptococcus bovis</td>
<td>penicillin G</td>
<td>a cephalosporin<sup>7,8</sup>; vancomycin</td>
</tr>
<tr>
<td>Streptococcus, anaerobic or Peptostreptococcus</td>
<td>penicillin G</td>
<td>clindamycin; a cephalosporin<sup>7,8</sup>; vancomycin</td>
</tr>
<tr>
<td>Streptococcus pneumoniae<sup>14</sup> (pneumococcus)</td>
<td>penicillin G or V<sup>12</sup>; amoxicillin</td>
<td>a cephalosporin<sup>7,8</sup>; erythromycin; azithromycin; clarithromycin<sup>13</sup>; levo-, gati-, gemi- or moxifloxacin<sup>16</sup>; meropenem, imipenem or ertapenem; telithromycin<sup>3</sup>; trimethoprim-sulfamethoxazole; clindamycin; a tetracycline<sup>15</sup>; vancomycin</td>
</tr>
<tr>
<td>Streptococcus pneumoniae*<sup>14</sup> (pneumococcus)</td>
<td>penicillin G IV (12 million units/day for adults); ceftriaxone or cefotaxime meningitis: vancomycin + ceftriaxone or cefotaxime, ± rifampin</td>
<td>linezolid; quinupristin/dalfopristin; telithromycin<sup>3</sup></td>
</tr>
<tr>
<td>Moraxella (Branhamella) catarrhalis</td>
<td>cefuroxime<sup>7</sup>; a fluoroquinolone<sup>5</sup></td>
<td>trimethoprim-sulfamethoxazole; amoxicillin/clavulanate; erythromycin; clarithromycin<sup>13</sup>; azithromycin; a tetracycline<sup>10</sup>; cefotaxime<sup>7</sup>; ceftizoxime<sup>7</sup>; ceftriaxone<sup>7</sup>; cefpodoxime<sup>7</sup>; telithromycin<sup>3</sup></td>
</tr>
<tr>
<td>Neisseria gonorrhoeae (gonococcus)<sup>17</sup></td>
<td>ceftriaxone<sup>7</sup>; ciprofloxacin, gatifloxacin or ofloxacin<sup>15,16</sup></td>
<td>cefotaxime<sup>7</sup>; penicillin G</td>
</tr>
<tr>
<td>Neisseria meningitidis<sup>18</sup> (meningococcus)</td>
<td>penicillin G</td>
<td>cefotaxime<sup>7</sup>; ceftizoxime<sup>7</sup>; ceftriaxone<sup>7</sup>; chloramphenicol<sup>19</sup>; a sulfonamide<sup>20</sup>; a fluoroquinolone<sup>5</sup></td>
</tr>
<tr>
<td>Bacillus anthracis<sup>21</sup> (anthrax)</td>
<td>ciprofloxacin<sup>16</sup>; a tetracycline<sup>10</sup></td>
<td>penicillin G; amoxicillin; erythromycin; imipenem; clindamycin; levofoxacin<sup>16</sup></td>
</tr>
<tr>
<td>Bacillus cereus, subtilis</td>
<td>vancomycin</td>
<td>imipenem or meropenem; clindamycin</td>
</tr>
<tr>
<td>Clostridium perfringens<sup>22</sup></td>
<td>penicillin G; clindamycin</td>
<td>metronidazole; imipenem, meropenem or ertapenem; chloramphenicol<sup>19</sup></td>
</tr>
<tr>
<td>Clostridium tetani<sup>23</sup></td>
<td>metronidazole</td>
<td>penicillin G; a tetracycline<sup>10</sup></td>
</tr>
<tr>
<td>Clostridium difficile<sup>24</sup></td>
<td>metronidazole (oral)</td>
<td>vancomycin (oral)</td>
</tr>
</tbody>
</table>

[†] Since this article was published, The Medical Letter has reviewed telithromycin (Ketek). See page 79.

14. Some strains of S. pneumoniae are resistant to erythromycin, clindamycin, trimethoprim-sulfamethoxazole, clari-thromycin, azithromycin and chloramphenicol, and resistance to the newer fluoroquinolones is rare but increasing (R Davidson et al, N Engl J Med 2002; 346:747). Nearly all strains tested so far are susceptible to linezolid and quinupristin/dalfopristin in vitro.

16. Usually not recommended for use in children or pregnant women.

17. Patients with gonorrhoea should be treated presumptively for co-infection with C. trachomatis with azithromycin or doxycycline.

18. Rare strains of N. meningitidis are resistant or relatively resistant to penicillin. A fluoroquinolone or rifampin is recommended for prophylaxis after close contact with infected patients.

19. Because of the possibility of serious adverse effects, this drug should be used only for severe infections when less hazardous drugs are ineffective.

20. Sulfonamide-resistant strains are frequent in the US; sulfonamides should be used only when susceptibility is established by susceptibility tests.

21. For post-exposure prophylaxis, ciprofloxacin for 4 weeks if given with vaccination, and 60 days if not given with vaccination, might prevent disease; if the strain is susceptible, doxycycline is an alternative (JG Bartlett et al, Clin Infect Dis 2002; 35:851; Medical Letter 2001; 43:87).

22. Debridement is primary. Large doses of penicillin G are required. Hyperbaric oxygen therapy may be a useful adjunct to surgical debridement in management of the spreading, necrotizing type of infection.

23. For prophylaxis, a tetracycl toxic blister and, for some patients, tetracycline is the drug of choice when less hazardous drugs are ineffective.

24. In order to decrease the emergence of vancomycin-resistant enterococci in hospitals and to reduce costs, most clinicians now recommend use of metronidazole first in treatment of patients with *C. difficile* colitis, with oral vancomycin used only for seriously ill patients or those who do not respond to metronidazole.
Choice of Antibacterial Drugs

<table>
<thead>
<tr>
<th>Infecting Organism</th>
<th>Drug of First Choice†</th>
<th>Alternative Drugs†</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAM-POSITIVE BACILLI (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium diphtheriae25</td>
<td>erythromycin</td>
<td>penicillin G</td>
</tr>
<tr>
<td>Corynebacterium, JK group</td>
<td>vancomycin</td>
<td>penicillin G + gentamicin; erythromycin</td>
</tr>
<tr>
<td>Erysipelothrix rhusiopathiae</td>
<td>penicillin G</td>
<td>erythromycin; a cephalosporin7,8; a fluoroquinolone5</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>ampicillin + gentamicin</td>
<td>trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td>ENTERIC GRAM-NEGATIVE BACILLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campylobacter fetus</td>
<td>a third-generation cephalosporin8; ampicillin; imipenem or meropenem</td>
<td></td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>erythromycin or azithromycin</td>
<td>a fluoroquinolone5; a tetracycline10; gentamicin</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>imipenem or meropenem26</td>
<td>a fluoroquinolone5; ertapenem; amikacin; a tetracycline10; trimethoprim-sulfamethoxazole; cefotaxime7,26, ceftriaxone7,26, ceftizoxime7,26, ceftipime7,26, or ceftazidime7,26</td>
</tr>
<tr>
<td>Enterobacter</td>
<td>imipenem or meropenem26; cefepime7,26</td>
<td>gentamicin, tobramycin or amikacin; trimethoprim-sulfamethoxazole; ciprofloxacin16; ticarcillin/clavulanate27 or piperacillin/sulfactam27; aztreonam26; cefotaxime, ceftriaxone, or ceftazidime7,26</td>
</tr>
<tr>
<td>Escherichia coli 28</td>
<td>cefotaxime, ceftriaxone, cefepime or ceftazidime7,26</td>
<td>ampicillin + gentamicin, tobramycin or amikacin; gentamicin, tobramycin or amikacin; amoxicillin/clavulanate26; ticarcillin/clavulanate27, piperacillin/tazobactam27; ampicillin/subactam26; trimethoprim-sulfamethoxazole; imipenem, meropenem or ertapenem26, aztreonam26; a fluoroquinolone5; another cephalosporin7,8</td>
</tr>
<tr>
<td>Klebsiella pneumoniae 28</td>
<td>cefotaxime, ceftriaxone, cefepime or ceftazidime7,26</td>
<td>imipenem, meropenem or ertapenem26; gentamicin, tobramycin or amikacin; amoxicillin/clavulanate26; ticarcillin/clavulanate27, piperacillin/tazobactam27; ampicillin/subactam26; trimethoprim-sulfamethoxazole; aztreonam26, a fluoroquinolone5; another cephalosporin7,8</td>
</tr>
<tr>
<td>Proteus mirabilis 28</td>
<td>ampicillin 29</td>
<td>a cephalosporin7,8,26; ticarcillin/clavulanate or piperacillin/tazobactam7; gentamicin, tobramycin or amikacin; trimethoprim-sulfamethoxazole; imipenem, meropenem or ertapenem26; aztreonam26; a fluoroquinolone5; chloramphenicol19</td>
</tr>
<tr>
<td>Proteus, indole-positive (including Providencia rettgeri, Morganella morganii, and Proteus vulgaris)</td>
<td>cefotaxime, ceftriaxone, cefepime or ceftazidime7,26</td>
<td>imipenem, meropenem or ertapenem26; gentamicin, tobramycin or amikacin; amoxicillin/clavulanate26; ticarcillin/clavulanate27, piperacillin/tazobactam27; ampicillin/subactam26; trimethoprim-sulfamethoxazole; aztreonam26; a fluoroquinolone5</td>
</tr>
<tr>
<td>Providencia stuartii</td>
<td>cefotaxime, ceftriaxone, cefepime or ceftazidime7,26</td>
<td>imipenem, meropenem or ertapenem26; gentamicin, tobramycin or amikacin; amoxicillin/clavulanate26; ticarcillin/clavulanate27, piperacillin/tazobactam27; gentamicin, tobramycin or amikacin; aztreonam26; trimethoprim-sulfamethoxazole; a fluoroquinolone5</td>
</tr>
<tr>
<td>Salmonella typhi (typhoid fever)30</td>
<td>a fluoroquinolone5 or ceftriaxone7</td>
<td>chloramphenicol19; trimethoprim-sulfamethoxazole; ampicillin; amoxicillin; azithromycin71</td>
</tr>
<tr>
<td>Other Salmonella 32</td>
<td>cefotaxime7 or ceftriaxone7 or a fluoroquinolone5</td>
<td>ampicillin or amoxicillin; trimethoprim-sulfamethoxazole; chloramphenicol19</td>
</tr>
<tr>
<td>Serratia</td>
<td>imipenem or meropenem26</td>
<td>gentamicin or amikacin; cefotaxime, ceftriaxone, ceftazidime7,24; aztreonam26; trimethoprim-sulfamethoxazole; a fluoroquinolone5</td>
</tr>
</tbody>
</table>

† Trade names are listed on page 61.

†† Resistance may be a problem; susceptibility tests should be used to guide therapy.

25. Antitoxin is primary; antimicrobials are used only to halt further toxin production and to prevent the carrier state.
26. In severely ill patients, most Medical Letter consultants would add gentamicin, tobramycin or amikacin.
27. In severely ill patients, most Medical Letter consultants would add gentamicin, tobramycin or amikacin (but see footnote 40).
28. For an acute, uncomplicated urinary tract infection, before the infecting organism is known, the drug of first choice is trimethoprim-sulfamethoxazole.
29. Large doses (6 grams or more daily) are usually necessary for systemic infections. In severely ill patients, some Medical Letter consultants would add gentamicin, tobramycin or amikacin.
32. Most cases of *Salmonella* gastroenteritis subside spontaneously without antimicrobial therapy. Immunosuppressed patients, young children and the elderly may benefit the most from antibacterials.
Choice of Antibacterial Drugs

<table>
<thead>
<tr>
<th>Infecting Organism</th>
<th>Drug of First Choice†</th>
<th>Alternative Drugs†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shigella</td>
<td>a fluoroquinolone5</td>
<td>azithromycin; trimethoprim-sulfamethoxazole; ampicillin; cefotaxime7</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>trimethoprim-sulfamethoxazole</td>
<td>a fluoroquinolone5; gentamicin, tobramycin or amikacin; cefotaxime7</td>
</tr>
</tbody>
</table>

OTHER GRAM-NEGATIVE BACILLI

Acinetobacter
imipenem or meropenem26
an aminoglycoside; ciprofloxacin16; trimethoprim-sulfamethoxazole; ticarcillin/clavulanate27 or piperacillin/tazobactam27; cefazidime20; minocycline10; doxycycline10; sulbactam33; polymyxin

Yersinia enterocolitica
trimethoprim-sulfamethoxazole
gentamicin or tobramycin; imipenem; a fluoroquinolone5

OTHER GRAM-NEGATIVE BACILLI

Acinetobacter
imipenem or meropenem26

Yersinia enterocolitica
trimethoprim-sulfamethoxazole
gentamicin or tobramycin; imipenem; a fluoroquinolone5

Acinetobacter
imipenem or meropenem26

Yersinia enterocolitica
trimethoprim-sulfamethoxazole
gentamicin or tobramycin; imipenem; a fluoroquinolone5

Acinetobacter
imipenem or meropenem26

Yersinia enterocolitica
trimethoprim-sulfamethoxazole
gentamicin or tobramycin; imipenem; a fluoroquinolone5

Acinetobacter
imipenem or meropenem26

Yersinia enterocolitica
trimethoprim-sulfamethoxazole
gentamicin or tobramycin; imipenem; a fluoroquinolone5

Acinetobacter
imipenem or meropenem26

Yersinia enterocolitica
trimethoprim-sulfamethoxazole
gentamicin or tobramycin; imipenem; a fluoroquinolone5

Acinetobacter
imipenem or meropenem26

Yersinia enterocolitica
trimethoprim-sulfamethoxazole
gentamicin or tobramycin; imipenem; a fluoroquinolone5

Acinetobacter
imipenem or meropenem26

Yersinia enterocolitica
trimethoprim-sulfamethoxazole
gentamicin or tobramycin; imipenem; a fluoroquinolone5

Acinetobacter
imipenem or meropenem26

Yersinia enterocolitica
trimethoprim-sulfamethoxazole
gentamicin or tobramycin; imipenem; a fluoroquinolone5

Acinetobacter
imipenem or meropenem26

Yersinia enterocolitica
trimethoprim-sulfamethoxazole
gentamicin or tobramycin; imipenem; a fluoroquinolone5
Choice of Antibacterial Drugs

<table>
<thead>
<tr>
<th>Infecting Organism</th>
<th>Drug of First Choice†</th>
<th>Alternative Drugs†</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTHER GRAM-NEGATIVE BACILLI (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>proton pump inhibitor39 + clarithromycin13 + either amoxicillin or metronidazole</td>
<td>bismuth subsalicylate + metronidazole + tetracycline HC10 + either a proton pump inhibitor39 or H2-blocker39</td>
</tr>
<tr>
<td>Legionella species</td>
<td>azithromycin or a fluoroquinolone10 ± rifampin; trimethoprim-sulfamethoxazole; erythromycin</td>
<td>doxycycline10 + rifampin; trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td>Leptotrichia buccalis</td>
<td>penicillin G</td>
<td>a tetracycline10; clindamycin; erythromycin</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>penicillin G</td>
<td>a tetracycline10; a second- or third-generation cephalosporin7; amoxicillin/clavulanate; ampicillin/ sulbactam</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>urinary tract infection: ciprofloxacin16</td>
<td>levofoxacin16; ticarcillin/clavulanate or piperacillin/tazobactam; ceftazidime7; cefepime7; imipenem or meropenem; aztreonam; tobramycin, gentamicin or amikacin</td>
</tr>
<tr>
<td></td>
<td>other infections: piperacillin/tazobactam or ticarcillin/ clavulanate, each plus tobramycin, gentamicin or amikacin40</td>
<td></td>
</tr>
<tr>
<td>Spirillum minus (rat bite fever)</td>
<td>penicillin G</td>
<td>a tetracycline10; streptomycin</td>
</tr>
<tr>
<td>Streptobacillus moniliformis (rat bite fever; Haverhill fever)</td>
<td>trimethoprim-sulfamethoxazole</td>
<td>a tetracycline10; a fluoroquinolone5</td>
</tr>
<tr>
<td>Vibrio cholerae (cholera)41</td>
<td>a tetracycline10</td>
<td>a fluoroquinolone6; trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td>Vibrio vulnificus</td>
<td>a tetracycline10</td>
<td>cefotaxime7; ciprofloxacin13</td>
</tr>
<tr>
<td>Yersinia pestis (plague)</td>
<td>streptomycin ± a tetracycline10</td>
<td>chloramphenicol10; gentamicin; trimethoprim- sulfamethoxazole; ciprofloxacin13</td>
</tr>
<tr>
<td>ACID FAST BACILLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>isoniazid + rifampin + pyrazinamide ± ethambutol or streptomycin19</td>
<td>a fluoroquinolone6; cycloserine19; capreomycin19 or kanamycin19 or amikacin19; ethionamide18; para- aminosalicylic acid19</td>
</tr>
<tr>
<td>Mycobacterium kansasii</td>
<td>isoniazid + rifampin ± ethambutol or streptomycin19</td>
<td>clarithromycin13 or azithromycin; ethionamide18; cycloserine19</td>
</tr>
<tr>
<td>Mycobacterium avium complex</td>
<td>treatment: clarithromycin13 or azithromycin + ethambutol ± rifabutin prophylaxis</td>
<td>ciprofloxacin16; amikacin19</td>
</tr>
<tr>
<td></td>
<td>amikacin + clarithromycin13</td>
<td>cefoxitin7; rifampin; a sulfonamide; doxycycline10; ethambutol; linezolid</td>
</tr>
<tr>
<td>Mycobacterium fortuitum/chelonae complex</td>
<td>minocycline10</td>
<td>trimethoprim-sulfamethoxazole; rifampin; clarithromycin15; doxycycline10</td>
</tr>
<tr>
<td>Mycobacterium leprae (leprosy)</td>
<td>dapson +rifampin ± clofazimine</td>
<td>minocycline10; ofloxacin16; clarithromycin13</td>
</tr>
</tbody>
</table>

* Resistance may be a problem; susceptibility tests should be used to guide therapy.
† Trade names are listed on page 61.

38. Eradication of H. pylori with various antibacterial combinations, given concurrently with a proton pump inhibitor or H2-blocker, has led to rapid healing of active peptic ulcers and low recurrence rates (Treatment Guidelines 2004; 2-9).
39. Proton pump inhibitors available in the US are omeprazole (Prilosec, and others), lansoprazole (Prevacid), pantoprazole (Protonix), esomeprazole (Nexium) and rabeprazole (Aciphex). Available H2-blockers include cimetidine (Tagamet, and others), famotidine (Pepcid, and others), nizatidine (Axid, and others) and ranitidine (Zantac, and others).
40. Neither gentamicin, tobramycin, netilmicin or amikacin should be mixed in the same bottle with carbenicillin, ticarcillin, mezlocillin or piperacillin for IV administration. When used in high doses or in patients with renal impairment, these penicillins may inactivate the aminoglycosides.
41. Antibiotic therapy is an adjunct to and not a substitute for prompt fluid and electrolyte replacement.
42. Most infections are self-limited without drug treatment.
Choice of Antibacterial Drugs

<table>
<thead>
<tr>
<th>Infecting Organism</th>
<th>Drug of First Choice†</th>
<th>Alternative Drugs†</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTINOMYCETES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinomyces israelii (actinomycosis)</td>
<td>penicillin G</td>
<td>a tetracycline⁵; erythromycin; clindamycin</td>
</tr>
<tr>
<td>Nocardia</td>
<td>trimethoprim-sulfamethoxazole</td>
<td>sulfisoxazole; amikacin¹⁹; a tetracycline¹⁰; ceftriaxone; imipenem or meropenem; cefoperazone¹³; linezolid</td>
</tr>
<tr>
<td>Rhodococcus equi</td>
<td>vancomycin ± a fluoroquinolone⁶, rifampin, imipenem or meropenem; amikacin</td>
<td>erythromycin</td>
</tr>
<tr>
<td>Tropheryma whippeli (Whipple’s disease)</td>
<td>trimethoprim-sulfamethoxazole</td>
<td>penicillin G; a tetracycline¹⁰; ceftriaxone</td>
</tr>
<tr>
<td>CHLAMYDIAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlamydia trachomatis</td>
<td>trachoma: azithromycin</td>
<td>a tetracycline¹⁰ (topical plus oral); a sulfonamide (topical plus oral)</td>
</tr>
<tr>
<td></td>
<td>inclusion conjunctivitis: erythromycin (oral or IV)</td>
<td>a sulfonamide</td>
</tr>
<tr>
<td></td>
<td>pneumonia: erythromycin</td>
<td>a sulfonamide</td>
</tr>
<tr>
<td></td>
<td>urethritis, cervicitis: azithromycin or doxycycline¹⁰</td>
<td>erythromycin; ofloxacin¹⁶; amoxicillin</td>
</tr>
<tr>
<td></td>
<td>lymphogranuloma venereum: a tetracycline¹⁰</td>
<td>erythromycin</td>
</tr>
<tr>
<td>Chlamydophila (formerly Chlamydia) pneumoniae (TWAR strain)</td>
<td>erythromycin; a tetracycline¹⁰; clarithromycin¹³ or azithromycin</td>
<td>a fluoroquinolone⁶; telithromycin⁹</td>
</tr>
<tr>
<td>Chlamydophila (formerly Chlamydia) psittaci (psittacosis; ornithosis)</td>
<td>erythromycin; a tetracycline¹⁰</td>
<td>chloramphenicol¹⁹</td>
</tr>
<tr>
<td>EHRLICHIAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaplasma phagocytophilum (formerly Ehrlichia phagocytophilum)</td>
<td>doxycycline¹⁰</td>
<td>rifampin</td>
</tr>
<tr>
<td>Ehrlichia chaffeensis</td>
<td>doxycycline¹⁰</td>
<td>chloramphenicol¹⁹</td>
</tr>
<tr>
<td>Ehrlichia ewingii</td>
<td>doxycycline¹⁰</td>
<td></td>
</tr>
<tr>
<td>MYCOPLASMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>erythromycin; a tetracycline¹⁰; clarithromycin¹³ or azithromycin</td>
<td>a fluoroquinolone⁶; telithromycin⁹</td>
</tr>
<tr>
<td>Ureaplasma urealyticum</td>
<td>azithromycin</td>
<td>erythromycin; a tetracycline¹⁰; clarithromycin¹³; ofloxacin¹⁶</td>
</tr>
<tr>
<td>RICKETTSIOSSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rickettsia rickettsii (Rocky Mountain spotted fever)</td>
<td>doxycycline¹⁰</td>
<td>chloramphenicol¹⁹; a fluoroquinolone⁶</td>
</tr>
<tr>
<td>Rickettsia typhi (endemic typhus-murine)</td>
<td>doxycycline¹⁰</td>
<td>chloramphenicol¹⁹; a fluoroquinolone⁶</td>
</tr>
<tr>
<td>Rickettsia prowazekii (epidemic typhus-louseborne)</td>
<td>doxycycline¹⁰</td>
<td>chloramphenicol¹⁹; a fluoroquinolone⁶</td>
</tr>
<tr>
<td>Orientia tsutsugamushi (scrub typhus)</td>
<td>doxycycline¹⁰</td>
<td>chloramphenicol¹⁹; a fluoroquinolone⁶</td>
</tr>
<tr>
<td>Coxiella burnetii (Q fever)</td>
<td>doxycycline¹⁰</td>
<td>chloramphenicol¹⁹; a fluoroquinolone⁶</td>
</tr>
<tr>
<td>SPIROCHETES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrelia burgdorferi (Lyme disease)¹⁴³</td>
<td>doxycycline¹⁰, amoxicillin; cefuroxime axetil⁷</td>
<td>ceftriaxone⁷; cefotaxime⁷; penicillin G; azithromycin; clarithromycin¹³</td>
</tr>
<tr>
<td>Borrelia recurrentis (relapsing fever)</td>
<td>a tetracycline¹⁰</td>
<td>penicillin G; erythromycin</td>
</tr>
<tr>
<td>Leptospira</td>
<td>penicillin G</td>
<td>a tetracycline¹⁰; ceftriaxone⁷,⁴⁴</td>
</tr>
<tr>
<td>Treponema pallidum (syphilis)</td>
<td>penicillin G¹²</td>
<td>a tetracycline¹⁰; ceftriaxone⁷</td>
</tr>
<tr>
<td>Treponema pertenue (yaws)</td>
<td>penicillin G</td>
<td>a tetracycline¹⁰</td>
</tr>
</tbody>
</table>

§ Since this article was published The Medical Letter has reviewed telithromycin (Ketek). See page 79.

43. For treatment of erythema migrans, uncomplicated facial nerve palsy, mild cardiac disease and arthritis, oral therapy is satisfactory; for other neurologic or more serious cardiac disease, parenteral therapy with ceftriaxone, cefotaxime or penicillin G is recommended. For recurrent arthritis after an oral regimen, another course of oral therapy or a parenteral drug may be given (GP Wormser et al, Clin Infect Dis 2000; 31:S1). For The Medical Letter review of the treatment of Lyme disease, see page 112.

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Brand Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>Amikin</td>
</tr>
<tr>
<td>Amikin</td>
<td>Amikacin</td>
</tr>
<tr>
<td>Aminosalicylic acid</td>
<td>Paser</td>
</tr>
<tr>
<td>Amoxicillin/clavulanate</td>
<td>Augmentin</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Principen</td>
</tr>
<tr>
<td>Ancef</td>
<td>Cefazolin</td>
</tr>
<tr>
<td>Augmentin</td>
<td>Amoxicillin/clavulanate</td>
</tr>
<tr>
<td>Avelox</td>
<td>Moxifloxacin</td>
</tr>
<tr>
<td>Azactam</td>
<td>Aztreonam</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>Zithromax</td>
</tr>
<tr>
<td>Bactrim</td>
<td>Trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td>Biaxin</td>
<td>Clarithromycin</td>
</tr>
<tr>
<td>Ceclor</td>
<td>Cefaclor</td>
</tr>
<tr>
<td>Cedax</td>
<td>Ceftibuten</td>
</tr>
<tr>
<td>Cefadroxil</td>
<td>Duricef</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>Ancef; Kefzol</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>Keflex; Cephalaxin</td>
</tr>
<tr>
<td>Cefdinir</td>
<td>Omnicef</td>
</tr>
<tr>
<td>Cefepime</td>
<td>Maxipime</td>
</tr>
<tr>
<td>Cefixime</td>
<td>Suprax</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>Fortaz</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>Sulfa</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>Fortaz; Tazicef; Tazidime</td>
</tr>
<tr>
<td>Cetofuran</td>
<td>Claforan</td>
</tr>
<tr>
<td>Cefotetan</td>
<td>Cefotan</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>Mefoxin</td>
</tr>
<tr>
<td>Cefpodoxime</td>
<td>Vantin</td>
</tr>
<tr>
<td>Cefprozil</td>
<td>Cefzil</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>Rocephin</td>
</tr>
<tr>
<td>Cefuroxime axetil</td>
<td>Ceftin</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>Cefuroxime axetil</td>
</tr>
<tr>
<td>Cefzil</td>
<td>Cefprozil</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>Keflex</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>Keflin</td>
</tr>
<tr>
<td>Cephalothin</td>
<td>Keflin</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Kefzol</td>
</tr>
<tr>
<td>Clofazimine</td>
<td>Lamprene</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>Biaxin</td>
</tr>
<tr>
<td>Cipro</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>Cipro</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>Cefotaxime</td>
</tr>
<tr>
<td>Clexicin</td>
<td>Clindamyacin</td>
</tr>
<tr>
<td>Cleocin</td>
<td>Cleocin</td>
</tr>
<tr>
<td>Clomoxazone</td>
<td>Lamprene</td>
</tr>
<tr>
<td>Cubicin</td>
<td>Daptomycin</td>
</tr>
<tr>
<td>Cycloserine</td>
<td>Seromycin</td>
</tr>
<tr>
<td>Dapsone</td>
<td>generics</td>
</tr>
</tbody>
</table>

Also available generically
Choice of Antibacterial Drugs

COST OF SOME ORAL ANTIBACTERIAL DRUGS

<table>
<thead>
<tr>
<th>Drug</th>
<th>Usual adult dosage</th>
<th>Pediatric dosage</th>
<th>Cost1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZITHROMYCIN – Zithromax</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 mg day 1, then 250 mg days 2-5</td>
<td>5-12 mg/kg q24h</td>
<td>$44.64</td>
<td></td>
</tr>
<tr>
<td>CEPHALOSPORINS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefaclor – average generic</td>
<td>500 mg q8h</td>
<td>6.6-13.3 mg/kg q8h</td>
<td>89.40</td>
</tr>
<tr>
<td>– average generic (extended-release)</td>
<td>500 mg q12h</td>
<td>71.40</td>
<td></td>
</tr>
<tr>
<td>Cefotaxim – average generic</td>
<td>1 gram daily</td>
<td>15 mg/kg q12h</td>
<td>62.20</td>
</tr>
<tr>
<td>Duricef</td>
<td>300 mg q12h</td>
<td>7 mg/kg q12h, or 14 mg/kg q24h</td>
<td>86.00</td>
</tr>
<tr>
<td>Cefditoren – Spectracef</td>
<td>400 mg q12h</td>
<td>70.80</td>
<td></td>
</tr>
<tr>
<td>Cefpodoxime – Vantin</td>
<td>200 mg q12h</td>
<td>10 mg/kg q24h, or 5 mg/kg q12h</td>
<td>106.00</td>
</tr>
<tr>
<td>Cefprozil – Zetil</td>
<td>500 mg q12h</td>
<td>15 mg/kg q12h</td>
<td>173.60</td>
</tr>
<tr>
<td>Ceftobuten – Cedax</td>
<td>400 mg daily</td>
<td>9 mg/kg q24h</td>
<td>86.30</td>
</tr>
<tr>
<td>Cefuroxime axetil – average generic</td>
<td>500 mg bid</td>
<td>10-15 mg/kg q12h</td>
<td>135.40</td>
</tr>
<tr>
<td>Cefdinir – Omnicef</td>
<td>300 mg q12h</td>
<td>7 mg/kg q12h, or 14 mg/kg q24h</td>
<td>86.00</td>
</tr>
<tr>
<td>Cefditoren – Spectracet</td>
<td>400 mg q12h</td>
<td>70.80</td>
<td></td>
</tr>
<tr>
<td>Cefpodoxime – Vantin</td>
<td>200 mg q12h</td>
<td>10 mg/kg q24h, or 5 mg/kg q12h</td>
<td>106.00</td>
</tr>
<tr>
<td>Cefprozil – Zetil</td>
<td>500 mg q12h</td>
<td>15 mg/kg q12h</td>
<td>173.60</td>
</tr>
<tr>
<td>Ceftobuten – Cedax</td>
<td>400 mg daily</td>
<td>9 mg/kg q24h</td>
<td>86.30</td>
</tr>
<tr>
<td>Cefuroxime axetil – average generic</td>
<td>500 mg bid</td>
<td>10-15 mg/kg q12h</td>
<td>135.40</td>
</tr>
<tr>
<td>Cefdinir – Omnicef</td>
<td>300 mg q12h</td>
<td>7 mg/kg q12h, or 14 mg/kg q24h</td>
<td>86.00</td>
</tr>
<tr>
<td>Cefditoren – Spectracet</td>
<td>400 mg q12h</td>
<td>70.80</td>
<td></td>
</tr>
<tr>
<td>Cefpodoxime – Vantin</td>
<td>200 mg q12h</td>
<td>10 mg/kg q24h, or 5 mg/kg q12h</td>
<td>106.00</td>
</tr>
<tr>
<td>Cefprozil – Zetil</td>
<td>500 mg q12h</td>
<td>15 mg/kg q12h</td>
<td>173.60</td>
</tr>
<tr>
<td>Ceftobuten – Cedax</td>
<td>400 mg daily</td>
<td>9 mg/kg q24h</td>
<td>86.30</td>
</tr>
<tr>
<td>Cefuroxime axetil – average generic</td>
<td>500 mg bid</td>
<td>10-15 mg/kg q12h</td>
<td>135.40</td>
</tr>
<tr>
<td>Cefdinir – Omnicef</td>
<td>300 mg q12h</td>
<td>7 mg/kg q12h, or 14 mg/kg q24h</td>
<td>86.00</td>
</tr>
<tr>
<td>Cefditoren – Spectracet</td>
<td>400 mg q12h</td>
<td>70.80</td>
<td></td>
</tr>
<tr>
<td>Cefpodoxime – Vantin</td>
<td>200 mg q12h</td>
<td>10 mg/kg q24h, or 5 mg/kg q12h</td>
<td>106.00</td>
</tr>
<tr>
<td>Cefprozil – Zetil</td>
<td>500 mg q12h</td>
<td>15 mg/kg q12h</td>
<td>173.60</td>
</tr>
<tr>
<td>Ceftobuten – Cedax</td>
<td>400 mg daily</td>
<td>9 mg/kg q24h</td>
<td>86.30</td>
</tr>
<tr>
<td>Cefuroxime axetil – average generic</td>
<td>500 mg bid</td>
<td>10-15 mg/kg q12h</td>
<td>135.40</td>
</tr>
<tr>
<td>Cefdinir – Omnicef</td>
<td>300 mg q12h</td>
<td>7 mg/kg q12h, or 14 mg/kg q24h</td>
<td>86.00</td>
</tr>
<tr>
<td>Cefditoren – Spectracet</td>
<td>400 mg q12h</td>
<td>70.80</td>
<td></td>
</tr>
<tr>
<td>Cefpodoxime – Vantin</td>
<td>200 mg q12h</td>
<td>10 mg/kg q24h, or 5 mg/kg q12h</td>
<td>106.00</td>
</tr>
<tr>
<td>Cefprozil – Zetil</td>
<td>500 mg q12h</td>
<td>15 mg/kg q12h</td>
<td>173.60</td>
</tr>
<tr>
<td>Ceftobuten – Cedax</td>
<td>400 mg daily</td>
<td>9 mg/kg q24h</td>
<td>86.30</td>
</tr>
<tr>
<td>Cefuroxime axetil – average generic</td>
<td>500 mg bid</td>
<td>10-15 mg/kg q12h</td>
<td>135.40</td>
</tr>
<tr>
<td>Cefdinir – Omnicef</td>
<td>300 mg q12h</td>
<td>7 mg/kg q12h, or 14 mg/kg q24h</td>
<td>86.00</td>
</tr>
<tr>
<td>Cefditoren – Spectracet</td>
<td>400 mg q12h</td>
<td>70.80</td>
<td></td>
</tr>
<tr>
<td>Cefpodoxime – Vantin</td>
<td>200 mg q12h</td>
<td>10 mg/kg q24h, or 5 mg/kg q12h</td>
<td>106.00</td>
</tr>
<tr>
<td>Cefprozil – Zetil</td>
<td>500 mg q12h</td>
<td>15 mg/kg q12h</td>
<td>173.60</td>
</tr>
<tr>
<td>Ceftobuten – Cedax</td>
<td>400 mg daily</td>
<td>9 mg/kg q24h</td>
<td>86.30</td>
</tr>
<tr>
<td>Cefuroxime axetil – average generic</td>
<td>500 mg bid</td>
<td>10-15 mg/kg q12h</td>
<td>135.40</td>
</tr>
<tr>
<td>Cefdinir – Omnicef</td>
<td>300 mg q12h</td>
<td>7 mg/kg q12h, or 14 mg/kg q24h</td>
<td>86.00</td>
</tr>
<tr>
<td>Cefditoren – Spectracet</td>
<td>400 mg q12h</td>
<td>70.80</td>
<td></td>
</tr>
<tr>
<td>Cefpodoxime – Vantin</td>
<td>200 mg q12h</td>
<td>10 mg/kg q24h, or 5 mg/kg q12h</td>
<td>106.00</td>
</tr>
<tr>
<td>Cefprozil – Zetil</td>
<td>500 mg q12h</td>
<td>15 mg/kg q12h</td>
<td>173.60</td>
</tr>
<tr>
<td>Ceftobuten – Cedax</td>
<td>400 mg daily</td>
<td>9 mg/kg q24h</td>
<td>86.30</td>
</tr>
<tr>
<td>Cefuroxime axetil – average generic</td>
<td>500 mg bid</td>
<td>10-15 mg/kg q12h</td>
<td>135.40</td>
</tr>
<tr>
<td>Cefdinir – Omnicef</td>
<td>300 mg q12h</td>
<td>7 mg/kg q12h, or 14 mg/kg q24h</td>
<td>86.00</td>
</tr>
<tr>
<td>Cefditoren – Spectracet</td>
<td>400 mg q12h</td>
<td>70.80</td>
<td></td>
</tr>
<tr>
<td>Cefpodoxime – Vantin</td>
<td>200 mg q12h</td>
<td>10 mg/kg q24h, or 5 mg/kg q12h</td>
<td>106.00</td>
</tr>
<tr>
<td>Cefprozil – Zetil</td>
<td>500 mg q12h</td>
<td>15 mg/kg q12h</td>
<td>173.60</td>
</tr>
<tr>
<td>Ceftobuten – Cedax</td>
<td>400 mg daily</td>
<td>9 mg/kg q24h</td>
<td>86.30</td>
</tr>
<tr>
<td>Cefuroxime axetil – average generic</td>
<td>500 mg bid</td>
<td>10-15 mg/kg q12h</td>
<td>135.40</td>
</tr>
<tr>
<td>Cefdinir – Omnicef</td>
<td>300 mg q12h</td>
<td>7 mg/kg q12h, or 14 mg/kg q24h</td>
<td>86.00</td>
</tr>
<tr>
<td>Cefditoren – Spectracet</td>
<td>400 mg q12h</td>
<td>70.80</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:

1. Cost for 10 days’ treatment (5 days with azithromycin and 1 day with fosfomycin), for an adult, according to data from retail pharmacies nationwide provided by NDCHealth, a health care services company, December 2003.
2. Pediatric dose for post-exposure prophylaxis for anthrax is 10-15 mg/kg bid.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Usual adult dosage</th>
<th>Pediatric dosage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENICILLINS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillin V<sup>4</sup> – average generic</td>
<td>500 mg q6h</td>
<td>6.25-12.5 mg/kg q6h</td>
<td>$11.20</td>
</tr>
<tr>
<td>Veevids</td>
<td></td>
<td></td>
<td>14.80</td>
</tr>
<tr>
<td>Amoxicillin – average generic</td>
<td>500 mg q8h</td>
<td>6.6-13.3 mg/kg q8h or 15 mg/kg q12h</td>
<td>9.60</td>
</tr>
<tr>
<td>Amoxicil</td>
<td></td>
<td></td>
<td>6.00</td>
</tr>
<tr>
<td>Amoxicillin/clavulanate<sup>5</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmentin</td>
<td>875 mg q12h</td>
<td>6.6-13.3 mg/kg q8h or 15 mg/kg q12h</td>
<td>110.00</td>
</tr>
<tr>
<td>Augmentin XR<sup>6</sup></td>
<td>2000 mg q12h</td>
<td></td>
<td>110.80</td>
</tr>
<tr>
<td>Ampicillin – average generic</td>
<td>500 mg q6h</td>
<td>12.5-25 mg/kg q6h</td>
<td>14.80</td>
</tr>
<tr>
<td>Principe</td>
<td></td>
<td></td>
<td>15.60</td>
</tr>
<tr>
<td>Cloxacillin – average generic</td>
<td>500 mg q6h</td>
<td>12.5-25 mg/kg q6h</td>
<td>27.60</td>
</tr>
<tr>
<td>Dicloxacillin – average generic</td>
<td>500 mg q6h</td>
<td>3.125-12.5 mg/kg q6h</td>
<td>47.60</td>
</tr>
<tr>
<td>Oxaclillin – average generic</td>
<td>500 mg q6h</td>
<td>12.5-25 mg/kg q6h</td>
<td>14.00</td>
</tr>
<tr>
<td>TETRACYCLINES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracycline HCl – average generic</td>
<td>500 mg q6h</td>
<td>6.25-12.5 mg/kg q6h<sup>7</sup></td>
<td>3.60</td>
</tr>
<tr>
<td>Sumycin</td>
<td></td>
<td></td>
<td>3.60</td>
</tr>
<tr>
<td>Doxycycline capsules – average generic</td>
<td>100 mg bid</td>
<td>2.2 mg/kg q12-24h<sup>7</sup></td>
<td>22.80</td>
</tr>
<tr>
<td>Vibramycin</td>
<td></td>
<td></td>
<td>87.80</td>
</tr>
<tr>
<td>TRIMETHOPRIM-SULFAMETHOXAZOLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– average generic</td>
<td>1 tablet q6h<sup>8</sup></td>
<td>4-5 mg/kg (TMP) q6h</td>
<td>16.00</td>
</tr>
<tr>
<td>Bacthrim</td>
<td></td>
<td></td>
<td>40.40</td>
</tr>
<tr>
<td>Septra</td>
<td></td>
<td></td>
<td>42.80</td>
</tr>
<tr>
<td>double strength (DS) – average generic</td>
<td>1 DS tablet q12h<sup>8</sup></td>
<td></td>
<td>11.60</td>
</tr>
<tr>
<td>Bacthrim DS</td>
<td></td>
<td></td>
<td>36.00</td>
</tr>
<tr>
<td>Septra DS</td>
<td></td>
<td></td>
<td>29.00</td>
</tr>
</tbody>
</table>

4. One mg is equal to 1600 units.
5. Dosage based on amoxicillin content. For doses of 500 or 875 mg, 500-mg or 875-mg tablets should be used, because multiple smaller tablets would contain too much clavulanate. The 875-mg, 500-mg and 250-mg tablets each contain 125 mg clavulanate. 125-mg chewable tablets and 125 mg/5 mL oral suspension both contain 31.25 mg clavulanate; 250-mg chewable tablets and 250-mg/5 mL oral suspension both contain 62.5 mg clavulanate.
6. Dosage based on amoxicillin content. Each tablet contains 1000 mg amoxicillin and 62.5 mg clavulanate.
7. Not recommended for children <8 years old.
8. Each tablet contains 400 mg sulfamethoxazole and 80 mg trimethoprim. Each DS tablet contains 800 mg sulfamethoxazole and 160 mg trimethoprim.
The choice of drugs for treatment of pneumonia depends on the most likely pathogens causing the infection and local antimicrobial resistance patterns. Factors such as severity of illness, presence of co-morbid conditions and whether the infection is community- or hospital-acquired also need to be considered.

PATHOGENS

Community-Acquired Pneumonia – “Atypical” pathogens (*Mycoplasma pneumoniae, Chlamydia pneumoniae* and respiratory viruses) probably cause most cases of community-acquired pneumonia (EN Vergis et al, Arch Intern Med 2000; 160:1294). *Legionella*, another atypical organism, is less common. Respiratory viruses, particularly respiratory syncytial virus (RSV) and parainfluenza, are more common in children than adults, but mild community-acquired pneumonia in adults may also be due to a virus, usually influenza A or B, parainfluenza, adenovirus or RSV. Recently, a novel coronavirus has caused pneumonia with severe acute respiratory distress syndrome (SARS) in both children and adults (KL Hon et al, Lancet 2003; 361:1701; TG Ksiazek et al, N Engl J Med 2003; 348:1953).

Among patients hospitalized with community-acquired pneumonia, *Streptococcus pneumoniae* (pneumococcus) is cultured in about 20% of cases (N Sopena et al, Eur J Clin Microbiol Infect Dis 1999; 18:852) and is implicated by other microbiologic techniques in at least another 20%. Other bacterial pathogens that commonly cause community-acquired pneumonia include *Haemophilus influenzae, Klebsiella pneumoniae* and
<table>
<thead>
<tr>
<th>Infecting Organism</th>
<th>Drugs for Choice*</th>
<th>Some Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus pneumoniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillin-susceptible</td>
<td>Penicillin G or V; amoxicillin</td>
<td>A cephalosporin; azithromycin, clarithromycin or erythromycin; levo-, gati-, gemi- or moxi- floxacin; meropenem, imipenem or ertapenem; clindamycin; doxycycline; trimethoprim/sulfamethoxazole; telithromycin</td>
</tr>
<tr>
<td>(MIC < 0.1 µg/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillin-intermediate resistance</td>
<td>Penicillin G IV (12 million units/day for adults); ceftriaxone or cefotaxime</td>
<td>Levo-, gati-, gemi- or moxifloxacin; vancomycin; linezolid; clindamycin; telithromycin</td>
</tr>
<tr>
<td>(MIC 0.1 - 2 µg/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillin-high level resistance</td>
<td>Vancomycin, ceftriaxone or cefotaxime; levofloxacin, gatifloxacin, gemifloxacin or moxifloxacin</td>
<td>Linezolid; quinupristin/dalfopristin; telithromycin</td>
</tr>
<tr>
<td>(MIC > 2 µg/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>Azithromycin, clarithromycin or erythromycin; doxycycline</td>
<td>Levo-, gati-, gemi- or moxifloxacin; telithromycin</td>
</tr>
<tr>
<td>Chlamydia pneumoniae</td>
<td>Azithromycin; clarithromycin or erythromycin; doxycycline</td>
<td>A fluoroquinolone; telithromycin</td>
</tr>
<tr>
<td>Chlamydia psittaci</td>
<td>Doxycycline</td>
<td>A fluoroquinolone</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>A second or third generation cephalosporin; amoxicillin/clavulanate</td>
<td>Doxycycline; azithromycin or clarithromycin; a fluoroquinolone; ampicillin or amoxicillin; telithromycin</td>
</tr>
<tr>
<td>Legionella pneumophila</td>
<td>Azithromycin or a fluoroquinolone ± rifampin</td>
<td>Doxycycline ± rifampin; erythromycin or clarithromycin</td>
</tr>
<tr>
<td>Klebsiella spp. (or other gram-negative bacilli)¹</td>
<td>Cefotaxime, ceftizoxime, ceftriaxone, cefepime or ceftazidime</td>
<td>Imipenem, meropenem or ertapenem; amoxicillin/clavulanate; ticarcillin/clavulanate; piperacillin/tazobactam; trimethoprim/sulfamethoxazole; a fluoroquinolone</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>A penicillinase-resistant penicillin²</td>
<td>Cefazolin; amoxicillin/clavulanate; ampicillin/sulbactam; ticarcillin/clavulanate; piperacillin/tazobactam; imipenem or meropenem; clindamycin; levofloxacin, gatifloxacin or moxifloxacin; vancomycin; linezolid</td>
</tr>
<tr>
<td>Methicillin-sensitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methicillin-resistant³</td>
<td>Vancomycin</td>
<td>Linezolid; quinupristin/dalfopristin; trimethoprim/sulfamethoxazole; levofloxacin, gatifloxacin or moxifloxacin</td>
</tr>
<tr>
<td>Anaerobic mouth flora (Bacteroides spp., Fusobacterium spp., Peptostreptococcus spp.)</td>
<td>Metronidazole or clindamycin</td>
<td>Imipenem, meropenem or ertapenem; amoxicillin/clavulanate; ticarcillin/clavulanate; piperacillin/tazobactam; cefoxitin; cefotetan; penicillin G; gatifloxacin or moxifloxacin</td>
</tr>
<tr>
<td>Influenza A</td>
<td>Oseltamivir, amantadine or rimantadine</td>
<td>Zanamivir</td>
</tr>
<tr>
<td>Respiratory Syncytial Virus</td>
<td>Ribavirin</td>
<td></td>
</tr>
</tbody>
</table>

* For severely ill patients, treatment should be given intravenously.

1. In severely ill patients, most Medical Letter consultants would add gentamicin, tobramycin or amikacin.

2. For oral use against *staphylococci*, cloxacillin or dicloxacillin is preferred; for severe infections, a parenteral formulation of nafcillin or oxacillin should be used. Ampicillin, amoxicillin, carbenicillin, ticarcillin and piperacillin are not effective against penicillinase-producing *staphylococci*. The combinations of clavulanate with amoxicillin or ticarcillin, sulbactam with ampicillin, and tazobactam with piperacillin may be active against these organisms.

3. Many strains of methicillin-resistant *staphylococci* are resistant to penicillinase-resistant penicillins; these strains are also resistant to cephalosporins, imipenem and meropenem, and are often resistant to fluoroquinolones, trimethoprim/sulfamethoxazole and clindamycin.
occasionally other enteric gram-negative bacilli and anaerobic mouth organisms. Tuberculosis, *Pneumocystis jiroveci* (formerly *carinii*) pneumonia and regionally endemic fungal infections, such as histoplasmosis, blastomycosis or coccidioidomycosis, must also be considered in the differential diagnosis (JG Bartlett et al, Clin Infect Dis 2000; 31:347). The etiology of community-acquired pneumonia is not accurately predicted by clinical and radiographic features; initial therapy is usually empiric.

Hospital-Acquired Pneumonia – Bacterial pneumonia that develops in a hospital is often caused by gram-negative bacilli, especially *Klebsiella* spp., *Enterobacter* spp., *Serratia* spp., *Acinetobacter* spp. and *Pseudomonas aeruginosa*. It can also be caused by *Staphylococcus aureus*.

INITIAL TREATMENT

Ambulatory Community-Acquired Pneumonia – Oral cephalosporins are less useful than in the past for treatment of pneumonia because of pneumococcal resistance and lack of activity against atypical pathogens. In ambulatory patients, an oral macrolide (erythromycin, azithromycin or clarithromycin), doxycycline, or a fluoroquinolone with good anti-pneumococcal activity (such as levo-, gati-, gemi- or moxifloxacin) is generally used in otherwise healthy adults. Pneumococci may, however, be resistant to macrolides (JR Lonks et al, J Antimicrob Chemother 2002; 50 suppl 2:87) and to doxycycline, especially if they are resistant to penicillin. For older patients or those with co-morbid illness such as chronic obstructive pulmonary disease, a fluoroquinolone may be a better choice. Fluoroquinolone-resistant pneumococci have also been described (MR Jacobs et al, J Antimicrob Chemother 2003; 52:229).

Hospitalized Community-Acquired Pneumonia – In patients with community-acquired pneumonia who require hospitalization, the parenteral third-generation cephalosporin ceftriaxone (or cefotaxime) plus a
Drugs for Pneumonia

Dosage and Cost of Some Oral Drugs for Pneumonia

<table>
<thead>
<tr>
<th>Drug</th>
<th>Usual Adult dosage</th>
<th>Usual Pediatric dosage</th>
<th>Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEPHALOSPORINS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefaclor – average generic</td>
<td>250-500 mg q8h</td>
<td>6.6-13.3 mg/kg q8h</td>
<td>$66.78</td>
</tr>
<tr>
<td>Cefaclor – Omnicef (Abbott)</td>
<td>300 mg q12h</td>
<td>7 mg/kg q12h</td>
<td>92.82</td>
</tr>
<tr>
<td>Ceftolozane pivoxil – Spectacef (TAP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefpodoxime proxetil – Vantin (Pharmacia)</td>
<td>200 mg q12h</td>
<td>5 mg/kg q12h</td>
<td>149.24</td>
</tr>
<tr>
<td>Cefprozil – Cefzil (Bristol-Myers Squibb)</td>
<td>500 mg q12h</td>
<td>15 mg/kg q12h</td>
<td>243.88</td>
</tr>
<tr>
<td>Cefuroxime – Ceftin (GlaxoSmithKline)</td>
<td>500 mg q12h</td>
<td>10-15mg/kg q12h</td>
<td>253.36</td>
</tr>
<tr>
<td>Loracarbef – Lorabid (Lilly)</td>
<td>200-400 mg q12h</td>
<td>7.5-15mg/kg q12h</td>
<td>117.32</td>
</tr>
<tr>
<td>MACROLIDES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin – Zithromax (Pfizer)</td>
<td>500 mg on day 1, then 250 mg/day on days 2-5</td>
<td>10 mg/kg on day 1, then 5 mg/kg/day on days 2-5</td>
<td>43.32</td>
</tr>
<tr>
<td>Clarithromycin – Biaxin (Abbott)</td>
<td>250-500 mg q12h</td>
<td>7.5 mg/kg q12h</td>
<td>114.80</td>
</tr>
<tr>
<td>Erythromycin base – delayed release capsules – average generic</td>
<td>1000 mg q24h x 7d</td>
<td>See footnote 1</td>
<td>62.16</td>
</tr>
<tr>
<td>ERYC (Warner Chilcott)</td>
<td>29.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-mycin (Knoll)</td>
<td>15.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLUOROQUINOLONES†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gatifloxacin – Tequin (Bristol-Myers Squibb)</td>
<td>400 mg q24h</td>
<td>Not recommended</td>
<td>125.44</td>
</tr>
<tr>
<td>Levofoxacin – Levaquin (Ortho-McNeil)</td>
<td>500-750 mg q24h</td>
<td>Not recommended</td>
<td>133.84</td>
</tr>
<tr>
<td>Moxifloxacin – Avelox (Bayer)</td>
<td>400 mg q24h</td>
<td>Not recommended</td>
<td>130.34</td>
</tr>
<tr>
<td>TETRACYCLINES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxycycline – average generic</td>
<td>100 mg q12h</td>
<td>Not recommended</td>
<td>29.40</td>
</tr>
<tr>
<td>Vibramycin (Pfizer)</td>
<td></td>
<td></td>
<td>119.28</td>
</tr>
<tr>
<td>PENICILLINS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin – average generic</td>
<td>500 mg-1 g q8h</td>
<td>8.33-16.67 mg/kg q8h</td>
<td>13.86</td>
</tr>
<tr>
<td>Amoxicillin (GlaxoSmithKline)</td>
<td>OR 875 mg q12h</td>
<td>OR 22.5 mg/kg q12h</td>
<td>8.40</td>
</tr>
<tr>
<td>Amoxicillin/clavulanate – Augmentin (GlaxoSmithKline)</td>
<td>500 mg q8h</td>
<td>8.33-16.67 mg/kg q8h</td>
<td>166.32</td>
</tr>
<tr>
<td>Augmentin XR</td>
<td>OR 875 mg q12h2</td>
<td>OR 22.5 mg/kg q12h2</td>
<td>74.76</td>
</tr>
<tr>
<td>OXAZOLIDINONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linezolid – Zyvox (Pharmacia)</td>
<td>600 mg q12h</td>
<td>10 mg/kg q8h</td>
<td>1587.04</td>
</tr>
<tr>
<td>ANTIVIRALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amanadine – average generic</td>
<td>200 mg q24h</td>
<td>2.5 mg/kg q12h x 5d</td>
<td>5.90</td>
</tr>
<tr>
<td>Symmetrel (Endo)</td>
<td>OR 100 mg q12h x 5d</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td>Oseltamivir – Tamiflu (Roche)</td>
<td>75 mg q12h x 5d</td>
<td>1-12 yrs old: see footnote 4</td>
<td>66.30</td>
</tr>
<tr>
<td>Ribavirin – Virazole (ICN)</td>
<td>aerosol treatment</td>
<td>aerosol treatment</td>
<td>1416.092</td>
</tr>
<tr>
<td>Rimantadine – average generic</td>
<td>12-18 hrs/d x 3-7d6</td>
<td>12-18 hrs/d x 3-7d6</td>
<td>16.00</td>
</tr>
<tr>
<td>Fluamidine (Forest)</td>
<td>200 mg q24h</td>
<td>2.5 mg/kg q12h x 5d</td>
<td>20.50</td>
</tr>
<tr>
<td>Zanamivir – Relenza (GlaxoSmithKline)</td>
<td>10 mg q12h x 5d7</td>
<td>10 mg q12h x 5d</td>
<td>24.80</td>
</tr>
</tbody>
</table>

* Cost for 14 days' treatment (except azithromycin, Biaxin XL and antivirals) at the lowest adult dosage, according to data from retail pharmacies nationwide provided by NDCHealth, a health care information services company, May 2003.

† Since this table was published, gemifloxacin (Factive) has been FDA-approved. See page 75 for a review.

1. Has not been studied in children.
2. Dosage based on amoxicillin content. For doses of 500 or 875 mg, 500-mg or 875-mg tablets should be used, because multiple smaller tablets would contain too much clavulanate. The 875-mg, 500-mg and 250-mg tablets each contain 125 mg clavulanate. 125-mg chewable tablets and 125-mg/6-mL oral suspension both contain 31.25 mg clavulanate; 250-mg chewable tablets and 250-mg/5-mL oral suspension both contain 62.5 mg clavulanate.
3. Dosage should be decreased to 100 mg/d for older nursing home residents and for patients ≥ 65 years old with adverse effects from 200 mg/d.
4. For children: 1-13 years of age dosage is by weight as follows: ≤ 15 kg – 30 mg q12h; >15-23 kg – 45 mg q12h; >23-40 kg – 60 mg q12h; > 40 kg – 75 mg q12h
6. Reservoir concentration of 20 mg/mL. Requires special aerosol-generating device (Spag-2 – Viratek) and expert respiratory therapy monitoring for administration.
7. Taken as two 5-mg inhalations using Actodisk Inhaler.
Drugs for Pneumonia

macrolide or doxycycline is recommended pending culture results, antibiotic susceptibility testing and clinical response (RB Brown et al, Chest 2003; 123:1503). Alternatively, a fluoroquinolone with good activity against *S. pneumoniae* (levo-, gati-, gimi- or moxifloxacin) could be used alone. If aspiration pneumonia is suspected, metronidazole (*Flagyl*, and others) or clindamycin (*Cleocin*, and others) can be added to improve coverage for oral anaerobes.

Patients so ill that they require admission to an ICU can be treated with ceftriaxone, cefotaxime or, to improve gram-negative coverage, ticarcillin/clavulanate or piperacillin/tazobactam, each plus a macrolide or fluoroquinolone to cover atypicals.

In treating pneumococcal pneumonia due to strains with intermediate degrees of penicillin resistance (minimal inhibitory concentration [MIC] 0.1 to 2 µg/ml), ceftriaxone, cefotaxime or high doses of intravenous (IV) penicillin G (12 million units daily for adults) can be used. For highly resistant strains (MIC > 2 µg/ml), an IV fluoroquinolone (levofloxacin, gatifloxacin or moxifloxacin), vancomycin or linezolid may be required, and should be added in all severely ill patients and in those not responding to ceftriaxone, cefotaxime or high-dose penicillin.

Hospital-Acquired Pneumonia — Susceptibility testing and resistance patterns within the region, as reported by hospital microbiology and public health laboratories, should be used to guide therapy. For initial treatment of hospital-acquired pneumonia, in which antimicrobial resistance is frequent and can emerge during treatment, Medical Letter consultants would use piperacillin/tazobactam, ticarcillin/clavulanate or a carbapenem (meropenem, imipenem or ertapenem), which have broad gram-negative activity, or cefepime, which has broader activity than ceftriaxone or cefotaxime against gram-negative organisms. In severely ill
Drugs for Pneumonia

patients, an aminoglycoside (tobramycin, gentamicin or amikacin) should be added.

Ciprofloxacin or aztreonam (*Azactam*), each in combination with clindamycin or vancomycin, can be substituted for the β-lactam in **patients allergic to penicillin**. Addition of vancomycin or linezolid should be considered in hospitals where **methicillin-resistant S. aureus** are prevalent. In hospitals where **multi-drug resistant P. aeruginosa** frequently cause nosocomial pneumonia, cefepime, imipenem or meropenem combined with an aminoglycoside would be a good first choice. **Nosocomial Acinetobacter** may only be sensitive to imipenem or colistin (colistimethate sodium, *Coly-Mycin*) (J Garnacho-Montero et al, Clin Infect Dis 2003; 36:1111).

ADVERSE EFFECTS

Carbapenems – As with other β-lactam antibiotics, rash, diarrhea, nausea, vomiting and reversible increases in aminotransferase activity have occurred with imipenem/cilastatin, meropenem and ertapenem. Meropenem is less likely to cause seizures than imipenem. Imipenem and ertapenem have been associated with low birth weight in animals; use of a carbapenem during pregnancy should be reserved for a strong clinical indication with no good alternative.

Cephalosporins – The most frequent adverse effects of cephalosporins include thrombophlebitis from intravenous infusions, pain at intramuscular injection sites, and transient disturbances in hepatic, renal and hematologic function. Diarrhea, nausea and vomiting can occur. Between 1% and 10% of adult patients with penicillin allergy will also develop allergic reactions to a cephalosporin; no skin testing materials are available to test for cephalosporin allergy. High doses of ceftriaxone can lead to high concentrations of the drug in bile; biliary sludge (biliary...
Drugs for Pneumonia

pseudolithiasis), although it is usually asymptomatic and resolves spontaneously, can cause symptoms resembling those of cholelithiasis. Hemolytic anemia has been reported rarely, particularly with cefotetan and ceftriaxone. Cephalosporins are probably safe for use in pregnancy.

Fluoroquinolones – Fluoroquinolones are generally well tolerated, but can occasionally cause skin rashes (particularly gemifloxacin) and gastrointestinal disturbances. Central-nervous-system toxicity, including dizziness, insomnia, confusion, hallucinations and seizures can occur, particularly in elderly patients. Hypersensitivity reactions, including vas-

<table>
<thead>
<tr>
<th>Drug</th>
<th>Usual Adult dosage</th>
<th>Usual Pediatric dosage</th>
<th>Cost1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEPHALOSPORINS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefepime – Maxipime (Elan)</td>
<td>1-2 g q8-12h</td>
<td>50 mg/kg q8-12h</td>
<td>$ 35.16</td>
</tr>
<tr>
<td>Cefotaxime – Clitho (Aventis)</td>
<td>1-2 g q8h</td>
<td>50-180 mg/kg/d divided q8-12h</td>
<td>29.64</td>
</tr>
<tr>
<td>Ceftriaxone – Rocephin (Roche)</td>
<td>1-2 g q8-12h</td>
<td>50 mg/kg/dose q8-12h</td>
<td>48.90</td>
</tr>
<tr>
<td>MACROLIDES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin – Zithromax (Pfizer)</td>
<td>500 mg q24h</td>
<td>Not recommended</td>
<td>25.54</td>
</tr>
<tr>
<td>Erythromycin – Erythrocin lactobionate (Abbott)</td>
<td>250 mg-1 g q6h2</td>
<td>3.75-12.5mg/kg q6h2</td>
<td>7.40</td>
</tr>
<tr>
<td>FLUOROQUINOLONES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin* – Cipro (Bayer)</td>
<td>400 mg q12h</td>
<td>Not recommended</td>
<td>60.00</td>
</tr>
<tr>
<td>Gatifloxacin – Tequin (Bristol Myers Squibb)</td>
<td>400 mg q24h</td>
<td>Not recommended</td>
<td>38.00</td>
</tr>
<tr>
<td>MACROLIDES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin – Zithromax (Pfizer)</td>
<td>500 mg q24h</td>
<td>Not recommended</td>
<td>25.54</td>
</tr>
<tr>
<td>Erythromycin – Erythrocin lactobionate (Abbott)</td>
<td>250 mg-1 g q6h2</td>
<td>3.75-12.5mg/kg q6h2</td>
<td>7.40</td>
</tr>
<tr>
<td>FLUOROQUINOLONES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin* – Cipro (Bayer)</td>
<td>400 mg q12h</td>
<td>Not recommended</td>
<td>60.00</td>
</tr>
<tr>
<td>Gatifloxacin – Tequin (Bristol Myers Squibb)</td>
<td>400 mg q24h</td>
<td>Not recommended</td>
<td>38.00</td>
</tr>
<tr>
<td>Levofloxacin – Levaquin (Ortho-McNeil)</td>
<td>500-750 mg q24h</td>
<td>Not recommended</td>
<td>42.00</td>
</tr>
<tr>
<td>Moxifloxacin – Avelox (Bayer)</td>
<td>400 mg q24h</td>
<td>Not recommended</td>
<td>42.50</td>
</tr>
<tr>
<td>PENICILLINS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillin G – average generic</td>
<td>12-24 million units/d divided q4-6h</td>
<td>100,000-300,000 units/kg/d divided q4-6h</td>
<td>68.81</td>
</tr>
<tr>
<td>* Should not be used to treat pneumococcal infections.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Cost for 1 day’s treatment at the lowest adult dosage, according to data from retail pharmacies nationwide provided by NDCHealth, a health care information services company, June 2003.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBAPENEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertapenem – Invanz (Merck)</td>
<td>1 g q24h</td>
<td>Not recommended</td>
<td>47.83</td>
</tr>
<tr>
<td>Imipenem-clavulanic – Primaxin (Merck)</td>
<td>0.5-1 g q6-8h4</td>
<td>15-25 mg/kg q6h5</td>
<td>82.17</td>
</tr>
<tr>
<td>Meropenem – Merrem (AstraZeneca)</td>
<td>1-2 g q8h</td>
<td>20-40 mg/kg q8h</td>
<td>158.04</td>
</tr>
<tr>
<td>VANCOMYCIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancomycin – average generic</td>
<td>1 g q12h</td>
<td>10 mg/kg q6h</td>
<td>10.32</td>
</tr>
<tr>
<td>OXAZOLIDINONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linezolid – Zyvox (Pharmacia)</td>
<td>600 mg q12h</td>
<td>10 mg/kg q8h</td>
<td>144.00</td>
</tr>
</tbody>
</table>

* By slow infusion to minimize thrombophlebitis.
3. Combination formulation: 2.25-g vial contains 2 g piperacillin/250 mg tazobactam; 3.375-g vial contains 3 g piperacillin/375 mg tazobactam; a 4.5-g vial contains 4 g piperacillin/500 mg tazobactam.
4. Combination formulation: 3.1-g vial contains 3 g ticarcillin/100 mg clavulanate.
5. Doses are for imipenem, which is combined with equal weight of clavulinate.
6. Vancomycin should be infused over a period of 60 minutes.
culitis, serum-sickness-like reactions and anaphylaxis occur rarely. Fluoroquinolones have been associated with tendinitis, achilles tendon rupture and, in studies with growing animals receiving high doses, cartilage damage; none of them are recommended for use in children less than 18 years old or in pregnant or nursing women. Prolongation of the QT interval has been reported, particularly with moxifloxacin. Moxifloxacin, levofloxacin, gemifloxacin and gatifloxacin should be avoided in patients who are taking other drugs known to prolong the QT interval (www.qtdrugs.org). Fluoroquinolones have been associated rarely with increased liver aminotransferases, acute interstitial nephritis, neutropenia and hypo- and hyperglycemia. [Since this article was published, The Medical Letter has reviewed gemifloxacin (Factive). See page 75.]

Linezolid – The most troubling adverse effect of linezolid is reversible myelosuppression, which occurs more frequently when the drug is continued for more than 2 weeks. Linezolid can also cause gastrointestinal upset and increases in aminotransferases. It has been associated with decreased fetal survival in animals.

Macrolides – Erythromycin seldom causes any serious adverse effects, but frequent gastrointestinal disturbances make it hard to take. Oral clarithromycin and azithromycin are both better tolerated than oral erythromycin. Neither has the high incidence of disabling nausea that occurs with erythromycin. Some nausea, diarrhea, abdominal pain, headache and dizziness occur occasionally. Clarithromycin can cause abnormal taste and rarely can cause liver failure. Reversible dose-related hearing loss has been reported with the high doses of clarithromycin and azithromycin used to treat *Mycobacterium avium* infections. Erythromycin and clarithromycin are potent inhibitors of CYP450 isozyme 3A4 and have many adverse interactions with other drugs. Azithromycin has fewer interactions. Erythromycin and clarithromycin
Drugs for Pneumonia

can cause prolongation of the QT interval and torsades de pointes. High doses of clarithromycin during pregnancy have caused cardiovascular anomalies in rats, cleft palates in mice, and fetal growth retardation in monkeys. The risk of cholestatic jaundice associated with use of erythromycin estolate (*Ilosone*) is increased in pregnant women. Azithromycin and non-esterolate erythromycin are probably safe in pregnancy.

Penicillins – Penicillin and newer semi-synthetic penicillins are generally well tolerated. Diarrhea and rashes are the most common adverse effects. Allergic reactions, including erythema multiforme, Stevens-Johnson syndrome and anaphylaxis can occur; skin testing materials are available to test for penicillin allergy. Other adverse effects of penicillins include thrombophlebitis from intravenous infusions and pain at intramuscular injection sites. Hemolytic anemia has been reported, and platelet dysfunction can occur with high doses. Mild reversible laboratory abnormalities including elevated BUN or creatinine, hyperbilirubinemia, increased aminotransferases, and eosinophilia, leukopenia or thrombocytopenia have all been reported. Piperacillin is less likely to cause fluid retention than ticarcillin. Penicillins are generally considered safe in pregnancy.

Telithromycin – A complete review of telithromycin (*Ketek*), including adverse effects (Med Lett Drugs Ther 2004; 46:66) begins on page 79.

Tetracyclines – Except for frequent gastrointestinal disturbance including nausea and vomiting, oral tetracyclines are generally well tolerated. Doxycycline causes less gastrointestinal disturbance than other tetracyclines. Malabsorption, enterocolitis and esophageal ulcerations occur occasionally. All tetracyclines inhibit bone growth and cause staining and deformity of teeth in children up to 8 years old, and in the newborn when given to pregnant women after the fourth month of pregnancy. They can also cause photosensitivity and allergic reactions including fixed drug eruptions, serum
sickness and anaphylaxis. Exacerbation of renal failure and autoimmune hepatitis have been reported in some patients treated with doxycycline.

Vancomycin – Vancomycin is generally well tolerated. Infusion reactions including fever, chills, “redman” syndrome and thrombophlebitis can occur. The drug must be given over 60 minutes in order to prevent hypotension. Allergic reactions with rash and, rarely, Stevens-Johnson syndrome have been reported. Vancomycin can cause 8th nerve damage, mainly to hearing, when given to elderly patients, those with underlying renal insufficiency, in large doses, or for more than 10 days; serum trough levels should be monitored in these settings. Peripheral neuropathy and, in patients with asthma, cough or bronchospasm, can occur rarely. Vancomycin should be used in pregnancy only if there is a strong clinical indication and no good alternative is available.

Antiviral Drugs – **Amantadine** may cause anorexia, nausea, peripheral edema and, particularly in the elderly, minor central nervous system effects such as nervousness, anxiety, insomnia, lethargy, difficulty concentrating and lightheadedness. **Rimantadine** has gastrointestinal adverse effects similar to those of amantadine, but a lower risk of CNS effects. Both amantadine and rimantadine are teratogenic in animals and contraindicated in pregnancy. Adverse effects associated with **zanamivir** have been uncommon, but include nasal and throat discomfort, headache and cough; bronchospasm has occurred in patients with asthma. Adverse effects due to **oseltamivir** have been reported in about 15% of treated patients. Nausea, vomiting and headache have been the most common. Nausea occurred less often when the drug was taken with food. **Ribavirin** is teratogenic and embryotoxic in animals, and is generally contraindicated in pregnancy. Pregnant women should not directly care for patients receiving ribavirin aerosol. Acute deterioration of respiratory function has been reported with ribavirin aerosol in infants and in adults.
Drugs for Pneumonia

with bronchospastic lung disease. Systemic ribavirin has been associated with hemolytic anemia.

RECOMMENDATIONS

Atypical organisms such as *Mycoplasma pneumoniae*, *Chlamydia pneumoniae* and respiratory viruses cause most cases of community-acquired pneumonia in young people with mild disease. Pneumococci are probably the most common cause in patients sick enough to be hospitalized, and gram-negative bacilli and *S. aureus* are common in hospital-acquired pneumonia. The increasing resistance of pneumococci to penicillin has made oral cephalosporins unreliable for treatment of pneumonia and has contributed to frequent use of fluoroquinolones, with the predictable result that fluoroquinolone resistance has now become a concern. Before the infecting organism is known, it would be reasonable to treat young healthy patients with mild disease with an oral macrolide (erythromycin, azithromycin or clarithromycin). For older or sicker patients, a fluoroquinolone with good antipneumococcal activity, such as levo-, gati-, gemi- or moxifloxacin, would be a better choice. For hospitalized patients, a parenteral 3rd generation cephalosporin such as ceftriaxone or cefotaxime combined with a macrolide or doxycycline should be effective against many penicillin-resistant pneumococci and atypicals, but with increasing resistance of *S. pneumoniae* to β-lactams, vancomycin or linezolid is now often added.

In hospital-acquired pneumonia, cefepime, imipenem or meropenem, plus an aminoglycoside, would be a reasonable first choice before the infecting organism is known. Addition of vancomycin should be considered in hospitals with a high prevalence of methicillin-resistant *S. aureus*.
Gemifloxacin (Factive)

Gemifloxacin (Factive – Oscient), a new oral fluoroquinolone antibiotic, has been approved by the FDA for 5 days’ treatment of acute bacterial exacerbations of chronic bronchitis (ABECB) and 7 days’ treatment of mild to moderate community-acquired pneumonia (CAP) in adults. For the next 6-8 months it will only be available, presumably for commercial reasons, in states east of the Rocky Mountains.

QUINOLONES FOR RESPIRATORY INFECTIONS — Fluoroquinolones are widely used for treatment of bacterial respiratory infections because of increasing resistance of *Streptococcus pneumoniae* to penicillin, macrolides (erythromycin, azithromycin [Zithromax] or clarithromycin [Biaxin]), doxycycline (Vibramycin, and others), and second-generation cephalosporins such as cefuroxime axetil (Ceftin, and others). Resistance to fluoroquinolones is also increasing among pneumococci, but levofloxacin, gatifloxacin and moxifloxacin are still active against the majority of multi-drug resistant strains.

ANTIBACTERIAL ACTIVITY — Like levo-, gati- and moxifloxacin, gemifloxacin is active against pneumococci, including most multi-drug resistant strains; *in vitro* it is more active than other quinolones against these resistant pneumococcal strains, but the clinical significance of this is unknown. Gemifloxacin, like other fluoroquinolones, is also active *in vitro* against other organisms that cause bacterial lower respiratory infections, including *Haemophilus influenzae*, *Moraxella catarrhalis*, *Chlamydia pneumoniae*, *Mycoplasma pneumoniae*, *Legionella pneumophila* and some strains of *Klebsiella pneumoniae*.
Gemifloxacin (Factive)

PHARMACOLOGY

<table>
<thead>
<tr>
<th>Class of drug</th>
<th>Fluoroquinolone antibacterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of action</td>
<td>Inhibits bacterial topoisomerase IV and DNA gyrase</td>
</tr>
<tr>
<td>Formulation</td>
<td>320-mg tablets</td>
</tr>
<tr>
<td>Route</td>
<td>Oral</td>
</tr>
<tr>
<td>Bioavailability</td>
<td>71%</td>
</tr>
<tr>
<td>Peak plasma levels</td>
<td>1 hour after PO dose</td>
</tr>
<tr>
<td>Plasma half-life</td>
<td>7 hours</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Hepatic (limited degree, not CYP450)</td>
</tr>
<tr>
<td>Excretion</td>
<td>Feces (61%); urine (36%)</td>
</tr>
</tbody>
</table>

CLINICAL STUDIES — Published comparative clinical trials are limited to the non-inferiority studies summarized in the table.\(^2\text{-}^6\) The studies of CAP included mostly patients with mild to moderately severe illness.

ADVERSE EFFECTS — Gemifloxacin causes a higher incidence of rash (about 3% in all patients) than other fluoroquinolones. In an unpublished study summarized in FDA review documents, women <40 years old were treated for 10 days with gemifloxacin or ciprofloxacin; the incidence of rash was 31.7% with gemifloxacin compared to 4.3% with ciprofloxacin.\(^7\) The rash usually resolved spontaneously within a week or two, but 5% of patients required treatment with systemic corticosteroids. Progression to life-threatening conditions such as Stevens-Johnson syndrome has not been reported. Photosensitivity has been reported rarely.

Dose-related liver enzyme abnormalities occurred in about 2% of patients treated with gemifloxacin 320 mg daily, about the same inci-
Gemifloxacin (Factive)

GEMIFLOXACIN CLINICAL STUDIES

<table>
<thead>
<tr>
<th>STUDY</th>
<th>DESIGN (N)</th>
<th>REGIMENS</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute bacterial exacerbations of chronic bronchitis (ABECB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Wilson et al²</td>
<td>Randomized double-blind (712)</td>
<td>Gemifloxacin 320 mg once/d x 5d vs. clarithromycin 500 mg bid x 7d</td>
<td>Bacteriologic cure: gemifloxacin 86.7%, clarithromycin 73.1%</td>
</tr>
<tr>
<td>S Sethi et al³</td>
<td>Randomized double-blind (360)</td>
<td>Gemifloxacin 500 mg once/d x 7d vs. levofloxacin 500 mg once/d x 7d</td>
<td>Bacteriologic cure: gemifloxacin 78.4%, levofloxacin 85.7%</td>
</tr>
<tr>
<td>R Wilson et al⁴</td>
<td>Randomized open-label (274)</td>
<td>Gemifloxacin 320 mg once/d x 5d vs. ceftriaxone 1 g IV once/d x 3d max followed by cefuroxime 500 mg PO bid x 7d max</td>
<td>Bacteriologic cure: gemifloxacin 62.5%, cefalosporins 60.8%</td>
</tr>
<tr>
<td>Community-acquired pneumonia (CAP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P Leophonte et al⁵</td>
<td>Randomized double-blind (324)</td>
<td>Gemifloxacin 320 mg once/d x 7d vs. amoxicillin/clavulanate 1 g/125 mg tid x 10d</td>
<td>Bacteriologic cure: gemifloxacin 87.2%, amoxicillin 89.1%</td>
</tr>
<tr>
<td>H Lode et al⁶</td>
<td>Randomized open-label (345)</td>
<td>Gemifloxacin 320 mg once/d x 7-14d vs. ceftriaxone 2 IV once/d x 1-7d followed by cefuroxime 500 mg PO bid x 1-13d</td>
<td>Bacteriologic cure: gemifloxacin 90.6%, cefalosporins 87.3%</td>
</tr>
</tbody>
</table>

COST OF SOME FLUOROQUINOLONES

<table>
<thead>
<tr>
<th>DRUG</th>
<th>DAILY DOSAGE¹</th>
<th>COST²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatifloxacin – Tequin (BMS)</td>
<td>400 mg once/day</td>
<td>$66.98</td>
</tr>
<tr>
<td>Gemifloxacin – Factive (Oscient)</td>
<td>320 mg once/day</td>
<td>$131.46</td>
</tr>
<tr>
<td>Levofloxacin – Levaquin (Ortho-McNeil)</td>
<td>500 mg once/day</td>
<td>$74.51</td>
</tr>
<tr>
<td>Moxifloxacin – Avelox (Bayer)</td>
<td>400 mg once/day</td>
<td>$74.91</td>
</tr>
</tbody>
</table>

¹. For treatment of community-acquired pneumonia.
². Cost for 7 days’ treatment, according to AWP listings in Red Book Update, September 2004.

dence as with other fluoroquinolones. Gemifloxacin prolongs the QTc interval by a mean of 2.6 milliseconds, which is less than with levofloxacin, gatifloxacin or moxifloxacin, all of which have rarely been associated with torsades de pointes.

All fluoroquinolones can cause gastrointestinal disturbances and, less commonly, central nervous system toxicity. Tendinitis and hypersensitiv-
Gemifloxacin (Factive)

Adverse effects, including vasculitis, serum-sickness-like reactions and anaphylaxis, occur rarely.

CONCLUSION — Gemifloxacin (Factive) probably is at least as effective as other oral fluoroquinolones with good anti-pneumococcal activity for treatment of respiratory infections, but data in patients with severe pneumonia are limited, the drug is expensive and the high incidence of rash is worrisome. Older drugs are preferred.

Telithromycin (Ketek) for Respiratory Infections

Telithromycin (Ketek – Aventis) has been approved by the FDA for oral treatment of mild to moderate community-acquired pneumonia, acute exacerbations of chronic bronchitis and acute bacterial sinusitis in patients age 18 and older. The drug is the first in a new class of antibiotics, the ketolides, derived from the macrolide erythromycin. Telithromycin has been marketed in Europe since 2001.

STANDARD TREATMENT — Community-acquired pneumonia (CAP) is most often caused by Streptococcus pneumoniae (pneumococci) or the “atypical” pathogens Mycoplasma pneumoniae, Chlamydophila (Chlamydia) pneumoniae and Legionella pneumophila. For initial treatment of ambulatory patients with CAP, an oral macrolide, doxycycline or a fluoroquinolone with good anti-pneumococcal activity such as gatifloxacin, levofloxacin or moxifloxacin is generally used (Treatment Guidelines from the Medical Letter 2003; 1:83). Cephalosporins, amoxicillin and amoxicillin/clavulanate (Augmentin) are also used, but are not effective against atypical pathogens.

Acute bacterial sinusitis (ABS) in adults, usually caused by pneumococci or β-lactamase producing organisms such as Haemophilus influenzae, Moraxella catarrhalis, and anaerobic streptococci, is generally treated with amoxicillin or amoxicillin/clavulanate, a cephalosporin such as cefuroxime axetil, or a fluoroquinolone with good antipneumococcal activity. Acute exacerbations of chronic bronchitis (AECB) may be due to H. influenzae or M. catarrhalis and are treated with the same antimicrobials used to treat sinusitis.

PNEUMOCOCCAL RESISTANCE — Pneumococci are increasingly resistant to macrolides, penicillin and doxycycline. In a study of 3362
Telithromycin (Ketek) for Respiratory Infections

Pneumococcal isolates collected from 25 countries around the world during a one-year period, 22.1% were resistant to penicillin, 31% were resistant to erythromycin and 29.7% were resistant to tetracycline. Similar rates were observed for azithromycin and clarithromycin. Among the isolates that were resistant to penicillin, 72.4% were also cross-resistant to macrolides. The percentage of strains resistant to fluoroquinolones has been less than 1% in the US as a whole, but as high as 5% in some urban centers (D Felmingham et al, J Antimicrob Chemother 2002; 50 suppl S1: 25; MJ Rybak, Ann Pharmacother 2004; 38:epub).

MECHANISM OF ACTION — Telithromycin inhibits bacterial protein synthesis by binding to the 50-S ribosomal subunit (HM Yassin and LL Dever, Expert Opin Investig Drugs 2001; 10:353). It differs from

COST OF SOME ORAL ANTIBIOTICS

<table>
<thead>
<tr>
<th>DRUG</th>
<th>DAILY DOSAGE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ß-LACTAMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin – average generic price</td>
<td>500 mg-1g q8h or</td>
<td>$25.80</td>
</tr>
<tr>
<td>Amoxicillin (GlaxoSmithKline)</td>
<td>875 mg q12h</td>
<td>17.00</td>
</tr>
<tr>
<td>Amoxicillin/clavulanate – Augmentin (GlaxoSmithKline)</td>
<td>875 mg q12h</td>
<td>18.40</td>
</tr>
<tr>
<td>Augmentin (GlaxoSmithKline)</td>
<td>500 mg/125mg q8h or</td>
<td>130.20</td>
</tr>
<tr>
<td>875 mg/125 mg q12h</td>
<td>116.20</td>
<td></td>
</tr>
<tr>
<td>Cefuroxime axetil – average generic price</td>
<td>2000 mg/125 mg q12h</td>
<td>113.60</td>
</tr>
<tr>
<td>Cefin (GlaxoSmithKline)</td>
<td>250-500 mg bid</td>
<td>139.20</td>
</tr>
<tr>
<td>Levas (GlaxoSmithKline)</td>
<td>202.60</td>
<td></td>
</tr>
<tr>
<td>FLUOROQUINOLONES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gatifloxacin – Tequin (Bristol-Myers Squibb)</td>
<td>400 mg once/day</td>
<td>94.80</td>
</tr>
<tr>
<td>Levofoxacin – Levaquin (Ortho-McNeil)</td>
<td>500 mg once/day</td>
<td>104.10</td>
</tr>
<tr>
<td>Mexifloxacin – Avelox (Bayer)</td>
<td>750 mg once/day for 5 days</td>
<td>97.15</td>
</tr>
<tr>
<td>KETOLIDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telithromycin – Ketek (Aventis)</td>
<td>800 mg once/day</td>
<td>114.00</td>
</tr>
<tr>
<td>MACROLIDES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin – Zithromax (Pfizer)</td>
<td>500 mg on day 1, then 250 mg once/day for days 2-5</td>
<td>46.86</td>
</tr>
<tr>
<td>Clarithromycin – Biaxin (Abbott)</td>
<td>250-500 mg bid</td>
<td>91.40</td>
</tr>
<tr>
<td>Biaxin XL</td>
<td>1000 mg once/day for 7 days</td>
<td>65.90</td>
</tr>
<tr>
<td>Erythromycin, enteric coated – average generic price</td>
<td>250-500 mg qid</td>
<td>11.20</td>
</tr>
<tr>
<td>Ery-Tab (Abbott)</td>
<td>17.20</td>
<td></td>
</tr>
<tr>
<td>TETRACYCLINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxycycline – average generic price</td>
<td>100 mg bid</td>
<td>22.40</td>
</tr>
<tr>
<td>Vibramycin (Pfizer)</td>
<td>95.60</td>
<td></td>
</tr>
</tbody>
</table>

1. For treatment of community-acquired pneumonia.
2. Cost for 10 days’ (except azithromycin, Biaxin XL and Levaquin 750 mg) treatment with the highest dosage recommended, based on the most recent data (June 30, 2004) from retail pharmacies nationwide available from NDCHealth, a healthcare information services company.
3. With good antipneumococcal activity.
Telithromycin (Ketek) for Respiratory Infections

erthromycin by ketone- and methoxy-group substitutions that make it more acid stable and less susceptible to drug export pumps and increase the drug’s ribosomal binding affinity, thereby overcoming the most frequent mechanisms of bacterial resistance to macrolides.

ANTIBACTERIAL ACTIVITY — Telithromycin has good activity in vitro against *S. pneumoniae* including most strains that are resistant to penicillin and erythromycin. It is similar to azithromycin and clarithromycin in its activity against *M. catarrhalis, H. influenzae, Bordetella pertussis* and the atypical respiratory pathogens *M. pneumo- niae, Legionella* and *Chlamydia* (G Ackermann and AC Rodloff, J Antimicrob Chemother 2003; 51:497). Telithromycin is also active in vitro against most strains of group A ß-hemolytic streptococci, erythromycin-susceptible strains of *Staphylococcus aureus, Helicobacter pylori* and some anaerobes (D Felmingham, Clin Microbiol Infect 2001; 7 suppl 3:2).

PHARMACOLOGY — Following an oral dose, telithromycin is rapidly absorbed from the GI tract, achieving peak serum concentrations in about one hour; absorption is not affected by food. Steady state plasma levels are reached in 2 to 3 days with continued dosing. The drug’s half-life is 10 hours. About 37% of the dose and 70% of the absorbed drug are metabolized in the liver, about half by CYP3A4 and half by CYP450-independent pathways. Elimination occurs through multiple pathways including fecal (7%) and renal excretion (13%).

CLINICAL STUDIES — A pooled analysis of 11 controlled and uncontrolled studies in patients with mild to moderate CAP, AECB or ABS compared 2695 patients who received once daily telithromycin (7-10 days for CAP, 5 days for AECB and 5 or 10 days for ABS) to 1190 patients who received a comparator antibiotic (for CAP, amoxicillin t.i.d. for 10 days, clarithromycin b.i.d. for 10 days or trovafloxacin once
Telithromycin (*Ketek*) for Respiratory Infections

daily for 7-10 days; for AECB or ABS, either amoxicillin/clavulanate t.i.d. or cefuroxime axetil b.i.d. for 10 days). Cure rates with telithromycin were similar to the comparators across the three indications studied: 83.3% vs. 80.8% in CAP, 79.5% vs. 74.9% in AECB and 77.3% vs. 69.8% in ABS (CM Fogarty et al, J Antimicrob Chemother 2003; 51:947).

In another pooled analysis of 13 studies (including 8 of the studies mentioned above), a subset analysis of telithromycin use in high-risk patients with CAP, either ≥65 years old (154) or with pneumococcal bacteremia (47), found that clinical cure rates were 90.3% and 91.5%, respectively (C Carbon, Infection 2003; 31:308).

ADVERSE EFFECTS — The most common adverse events associated with telithromycin in clinical trials have been GI disturbances, including diarrhea (10% vs. 8% for comparators), nausea (7% vs. 4.1%), and vomiting (2.4% vs. 1.4%). Visual difficulties, particularly slowed ability to accommodate or release accommodation, that manifested as blurred vision, diplopia or difficulty focusing, have occurred in about 1% of patients; women under 40 years of age had the highest incidence (2%). Visual symptoms could occur after any dose, but were most common after the first or second; patients should be warned accordingly. Telithromycin, like erythromycin and clarithromycin, has the potential to prolong the QT interval, but QT prolongation has not been observed in clinical trials and there have been no reports of torsades de pointes or other ventricular arrhythmias (J-L Démolis et al, Clin Pharmacol Ther 2003; 73:242). Exacerbation of myasthenia gravis, including life-threatening respiratory failure, has been reported in patients taking telithromycin during postmarketing surveillance in Europe (RB Neiman et al, Clin Infect Dis 2003; 37:1579); the drug should not be prescribed for patients with myasthenia. Patients who are allergic to macrolides should not take telithromycin.
Telithromycin (Ketek) for Respiratory Infections

DRUG INTERACTIONS — Telithromycin is both a substrate and a potent inhibitor of CYP3A4 and can increase serum concentrations of many drugs metabolized by 3A4. It is contraindicated for use with cisapride (Propulsid: no longer marketed but still available in the US) and pimozide (Orap). Simvastatin (Zocor), lovastatin (Mevacor, and others) and atorvastatin (Lipitor) should be stopped while taking the antibiotic. Telithromycin also can markedly increase serum concentrations of the short-acting benzodiazepine midazolam (Versed, and others); although not listed as a contraindication in the telithromycin package insert, it may be prudent to use another short-acting hypnotic instead. Telithromycin can increase serum concentrations of ergot alkaloids used to treat migraine; severe peripheral vasospasm has been reported with concurrent use of macrolides. When coadministered, telithromycin can lead to increased serum concentrations of other substrates of CYP3A4, such as ritonavir (Norvir), sirolimus (Rapamune) or tacrolimus (Prograf), or of the CYP2D6 substrate metoprolol (Lopressor, and others). Telithromycin also increases peak serum levels of digoxin (Lanoxin, and others), probably by inhibition of P-glycoprotein.

Itraconazole (Sporanox) and ketoconazole (Nizoral, and others), both potent CYP3A4 inhibitors, increase telithromycin serum concentrations. Coadministration of the potent CYP3A4 inducer rifampin (Rifadin, and others) should be avoided; other inducers such as carbamazepine (Tegretol, and others) or phenytoin (Dilantin, and others) could decrease serum concentrations of telithromycin to subtherapeutic levels. Theophylline (Theodur, and others) can increase gastrointestinal adverse effects of telithromycin; they should be taken at least one hour apart. Telithromycin decreases absorption and serum levels of sotalol (Betapace). Like erythromycin and clarithromycin, telithromycin should be used cautiously with other drugs that can cause prolongation of the QT interval (www.qtdrugs.org).
Telithromycin (*Ketek*) for Respiratory Infections

DOSAGE — *Ketek* is marketed as a 400-mg tablet. No parenteral formulation is available. The recommended dosage is 800 mg once daily for 7-10 days for CAP and for 5 days for AECB or ABS. The optimal dose in patients with severe renal insufficiency (creatinine clearance <30 ml/min) has not been established; some consultants recommend a dose reduction to 400 mg once daily. No dose adjustment is required in hepatic insufficiency.

CONCLUSION — Oral telithromycin (*Ketek*), the first ketolide antibiotic, is at least as effective as standard drugs for treatment of bacterial respiratory infections, and is also effective for the pneumococcal respiratory infections that are macrolide-resistant. It would be a reasonable alternative to a fluoroquinolone for treatment of such infections. The drug is expensive, however, and visual adverse effects may be troublesome. Telithromycin is a potent inhibitor of CYP3A4 and can cause potentially dangerous increases in the serum concentrations of simvastatin (*Zocor*), lovastatin (*Mevacor*, and others), atorvastatin (*Lipitor*), midazolam (*Versed*, and others) and other drugs.
Tuberculosis (TB) is still a problem in the United States, even though the incidence continues to decline in most of the country (MMWR Morbid Mortal Wkly Rep 2004; 53:209). Treatment of TB can be divided into treatment of latent infection diagnosed by a positive PPD and treatment of active clinical TB. Guidelines with detailed management recommendations are available from the US Centers for Disease Control and Prevention (CDC) (MMWR Morbid Mortal Wkly Rep 2003; 52RR-11:1).

TREATMENT OF LATENT TB INFECTION

The risk of developing clinical tuberculosis is greatest in patients with latent TB who are also infected with HIV or are receiving immunosuppressive therapy. It is also high in close contacts of patients with recent pulmonary tuberculosis, in those with radiographic evidence of prior TB, during the first 2 years after development of a positive tuberculin test, and in recent immigrants (CR Horsburgh Jr, N Engl J Med 2004; 350:2060; K Khan et al, N Engl J Med 2002; 347:1850).

The risk of serious disease, including miliary tuberculosis and tuberculous meningitis, is highest in infants, the elderly, and in patients with HIV infection or other causes of severe immunosuppression. Recent studies also indicate high risk for development of clinical TB, including life-threatening and miliary disease, in persons with latent TB who are treated with the TNF-alpha inhibitors infliximab (Remicaiad), etanercept (Enbrel), and adalimumab (Humira). Before beginning therapy with
Drugs for Tuberculosis

these drugs, tuberculin skin testing and, if positive, initiation of treatment for latent TB infection, is recommended (MMWR Morbid Mortal Wkly Rep 2004; 53:683; KL Wintrop and JN Siegel, Clin Infect Dis 2004; 39:1256).

Isoniazid – Isoniazid is the drug of choice for treatment of latent TB infection. It should be given for 9 months in a single daily dose of 300 mg for adults and 10 mg/kg (max 300 mg/day) for children, or twice weekly as 10-15 mg/kg (max 900 mg/dose) in adults and 20-30 mg/kg (max 900 mg/dose) in children (MMWR Morb Mortal Wkly Rep 2000; 49 RR-6:1). It is safe for treatment of latent TB in pregnancy (G Bothamley, Drug Saf 2001; 24:553).

Alternatives – Another possible regimen for treatment of latent TB is daily rifampin alone for 4 months, which may be useful in persons intolerant to isoniazid or those found to be tuberculin-positive after exposure to patients with organisms resistant to isoniazid (LB Reichman et al, Am J Respir Crit Care Med 2004; 170:832). The combination of rifampin and pyrazinamide for 2 months, which formerly was used as an alternative to isoniazid treatment of latent infection, should not be given because of its association with potentially lethal hepatotoxicity (MMWR Morbid Mortal Wkly Rep 2003; 52:735).

MDRTB – For patients with known exposure to multi-drug resistant TB (MDRTB) and a high risk of developing active TB, there are no data-based recommendations. Regimens with two drugs to which the organism is susceptible (e.g., pyrazinamide plus ethambutol or a fluoroquinolone for 9 to 12 months) have been used, but may be poorly tolerated (J Papastavros et al, CMAJ 2002; 167:131; R Ridzon et al, Clin Infect Dis 1997; 24:1264).
DIRECTLY OBSERVED THERAPY

In treating TB, poor adherence to therapy is the most important cause of treatment failure and is associated with emergence of drug resistance. Medical Letter consultants recommend that almost all patients, including those with infection due to susceptible strains, take drugs for TB under direct observation (“directly observed therapy” or DOT). DOT has been shown to improve cure rates when compared to self-administered regimens (RM Jasmer et al, Am J Respir Crit Care Med 2004; 170:561). Due to the complexity and duration of treatment regimens, DOT is particularly important for treatment of patients with MDRTB and for patients on intermittent regimens. DOT services are available through most local and state health department TB programs.

TREATMENT OF SUSCEPTIBLE TB

All isolates of *Mycobacterium tuberculosis* should be tested for antimicrobial susceptibility, but results generally do not become available for at least 2 weeks and sometimes much longer (GL Woods, Infect Dis Clin North Am 2002; 16:127). Standard therapy for TB includes a 2-month initial phase of treatment and a continuation phase of either 4 or 7 months, depending on the results of sputum cultures at 2 months. Among the drugs used for treatment of TB, effectiveness is best documented for regimens containing isoniazid and rifampin.

Empiric Initial Therapy – Until susceptibility results are available, empiric initial treatment consists of a 4-drug regimen of isoniazid, rifampin, pyrazinamide and ethambutol (ED Chan and MD Iseman, BMJ 2002; 325:1282). Patients who cannot take pyrazinamide, such as those who have severe liver disease or gout, should receive empiric initial therapy with isoniazid, rifampin and ethambutol.
Drugs for Tuberculosis

Susceptible Organisms – When infection proves to be caused by a fully susceptible strain of TB, the initial phase of treatment should include isoniazid, rifampin and pyrazinamide. If pulmonary cavitation is not present on the initial chest X-ray and the patient has a negative AFB smear at 2 months, isoniazid plus rifampin or rifapentine, a long-acting rifamycin, can be given for the next 4 months (continuation phase) to complete a total of 6 months. For patients with a positive AFB culture at 2 months and cavitary lung disease, continuation therapy with isoniazid and rifampin is extended to 7 months (for a total duration of therapy of 9 months). Rifampin, not rifapentine, should be used for continuation therapy if there is cavitary lung disease, a positive AFB smear at 2 months, coinfection with HIV, extrapulmonary disease, or infection in children.

Disseminated TB, tuberculous meningitis and infections in children are usually treated for a total of 9-12 months. Osteomyelitis is usually treated for 6-9 months. Addition of a corticosteroid for 1-2 months is rec-
Drugs for Tuberculosis

Drug Intolerance – For patients who cannot tolerate rifampin, alternative regimens include 9-12 months of isoniazid, ethambutol and pyrazinamide, with or without a fluoroquinolone (usually levofloxacin, moxifloxacin, or gatifloxacin); 18 months of isoniazid plus ethambutol has also been given. Rifabutin has been substituted for rifampin in standard regimens for some patients who could not take rifampin because of drug interactions (SV Goldberg et al, Clin Infect Dis 2003; 37:607; A Lopez-Montes et al, Am J Kidney Dis 2004; 44:e59). Patients who cannot take pyrazinamide in the initial phase of treatment should receive continuation therapy with isoniazid and rifampin for a total of 7 months.

Intermittent Treatment – Intermittent 4-drug regimens with 2 or 3 doses per week after at least 2 weeks of daily therapy are also effective for treatment of TB and should always be given by DOT. Once-weekly continuation-therapy regimens including rifapentine (instead of rifampin), started after 2 months of standard initial therapy, may also be effective for susceptible TB (Tuberculosis Trials Consortium, Lancet...
Drugs for Tuberculosis

2002; 360:528), but the optimal rifapentine dose is not clear, and these regimens have been associated with development of resistance (M Weiner et al, Am J Respir Crit Care Med 2004; 169:1191; FM Gordin, Am J Respir Crit Care Med 2004; 169:1176). Intermittent treatment should never be used for treatment of drug-resistant TB.

Fixed-Dose Combinations – A combination formulation of rifampin, isoniazid and pyrazinamide (*Rifater*) is approved by the FDA for the initial 2 months of daily anti-tuberculosis therapy. A combination of rifampin and isoniazid (*Rifamate*) has been available in the US since 1975. Fixed-dose combinations may be particularly useful for patients self-administering their therapy (B Blomberg and B Fourie, Drugs 2003; 63:535).
TREATMENT OF RESISTANT TB

Resistance to Isoniazid – The most common pattern of resistance is isolated resistance to isoniazid, which can be treated with rifampin, pyrazinamide and ethambutol for 6-9 months. A quinolone is often added if there is extensive disease; streptomycin is an alternative to ethambutol. Patients who cannot tolerate pyrazinamide can take rifampin and ethambutol for 12 months.

Multidrug Resistance – Treatment of MDRTB is based on limited data; patients should be referred, if possible, to clinicians who have experience in treating such cases. MDRTB (resistant at least to isoniazid and rifampin) should be treated with ≥ 4 drugs to which the organism is susceptible. Three drugs are usually given by mouth, the fourth by injection. When MDRTB is likely, or in patients with a history of previous treatment for TB, some clinicians start with combinations of 5, 6 or 7 drugs before laboratory susceptibility data are available.

Typically, empiric therapy for suspected MDRTB includes isoniazid, rifampin, ethambutol, pyrazinamide, an aminoglycoside (streptomycin, kanamycin or amikacin) or capreomycin, a fluoroquinolone (usually levofloxacin, moxifloxacin or gatifloxacin), and either cycloserine, ethionamide or aminosalicylic acid (PAS) (JB Nachega and RE Chaisson, Clin Infect Dis 2003; 36 suppl 1:S24; JS Mukherjee et al, Lancet 2004; 363:474). Even when susceptibility is confirmed, the regimen should include at least 4 active drugs.

Monthly bacteriologic results (AFB smear and culture) should be monitored and treatment continued for 18-24 months, or 12-18 months after the culture becomes negative. The parenteral drug should be continued for 6 months after culture conversion. Surgical
Drugs for Tuberculosis

HIV-INFECTED PATIENTS

Because TB therapy is complicated by co-infection with HIV, testing for HIV infection is recommended for all patients with active tuberculosis. To minimize the risk of resistance, treatment in the continuation phase should be given once daily or three times weekly (MMWR Morbid Mortal Wkly Rep 2002; 51:214). Twice weekly regimens should not be given to patients with CD4 cell counts <100 cells/mm^3 because they have been associated with rifamycin resistance (RE Nettles et al, Clin Infect Dis 2004; 38:731). Rifapentine is not recommended for TB treatment in HIV-infected patients because it has been associated with development of rifamycin resistance (A Vernon et al, Lancet 1999; 353:1843).

Some Second-Line Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Daily adult dosage</th>
<th>Daily pediatric dosage</th>
<th>Main adverse effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptomycin¹</td>
<td>15 mg/kg IM (max 1 g)</td>
<td>20-40 mg/kg</td>
<td>Vestibular and auditory toxicity, renal damage</td>
</tr>
<tr>
<td>Capreomycin (Capastat)</td>
<td>15 mg/kg IM (max 1 g)</td>
<td>15-30 mg/kg</td>
<td>Auditory and vestibular toxicity, renal damage</td>
</tr>
<tr>
<td>Kanamycin (Kontrex, and others)</td>
<td>15 mg/kg IM, IV (max 1 g)</td>
<td>15-30 mg/kg</td>
<td>Auditory toxicity, renal damage</td>
</tr>
<tr>
<td>Amikacin (Amikin)</td>
<td>15 mg/kg IM, IV (max 1 g)</td>
<td>15-30 mg/kg</td>
<td>Auditory toxicity, renal damage</td>
</tr>
<tr>
<td>Cycloserine² (Seromycin, and others)</td>
<td>10-15 mg/kg in 2 doses (max 500 mg bid) PO</td>
<td>10-15 mg/kg</td>
<td>Psychiatric symptoms, seizures</td>
</tr>
<tr>
<td>Ethionamide (Trecator-SC)</td>
<td>15-20 mg/kg in 2 doses (max 500 mg bid) PO</td>
<td>15-20 mg/kg</td>
<td>GI and hepatic toxicity, hypothyroidism</td>
</tr>
<tr>
<td>Ciprofloxacin (Cipro, and others)</td>
<td>Not recommended</td>
<td>Not recommended</td>
<td>Nausea, abdominal pain, restlessness, confusion</td>
</tr>
<tr>
<td>Ofloxacin (Floxin)</td>
<td>600-800 mg PO, IV</td>
<td>Not recommended</td>
<td>Nausea, abdominal pain, restlessness, confusion</td>
</tr>
<tr>
<td>Levofloxacin (Levaquin)</td>
<td>500-1000 mg PO, IV</td>
<td>Not recommended</td>
<td>Nausea, abdominal pain, restlessness, confusion</td>
</tr>
<tr>
<td>Gatifloxacin³ (Tequin)</td>
<td>400 mg PO, IV</td>
<td>Not recommended</td>
<td>Nausea, abdominal pain, restlessness, confusion</td>
</tr>
<tr>
<td>Moxifloxacin³ (Avelox)</td>
<td>400 mg PO, IV</td>
<td>Not recommended</td>
<td>Nausea, abdominal pain, restlessness, confusion</td>
</tr>
<tr>
<td>Aminosalicylic acid (PAS, Paser)</td>
<td>8-12 g in 2-3 doses PO</td>
<td>200-300 mg/kg, in 2-4 doses</td>
<td>GI disturbance</td>
</tr>
</tbody>
</table>

1. When oral drugs are given daily, streptomycin is generally given 5 times per week (15 mg/kg, or a maximum of 1 g per dose) for an initial 2 to 12 week period, and then (if needed) 2 to 3 times per week (20 to 30 mg/kg, or a maximum of 1.5 g per dose). For patients >59 years old, dosage is reduced to 10 mg/kg/d (max 750 mg/d), Dosage should be decreased if renal function is diminished.

2. Some authorities recommend pyridoxine 50 mg for every 250 mg of cycloserine to decrease the incidence of adverse neurological effects.

3. No published clinical data on dosage for tuberculosis.
Patients Not on HAART – For HIV-infected patients requiring TB treatment who are not currently being treated with highly active antiretroviral therapy (HAART), it may be prudent to delay HAART (particularly in patients with CD4 cell counts above 100 cells/mm3) for 2 or more months in order to avoid a paradoxical worsening of TB due to immune reconstitution, decrease the risk of overlapping drug adverse effects and interactions, and enhance adherence to both drug regimens (GL Dean et al, AIDS 2002; 16:75; DB Pedial-Sampaio et al, AIDS 2002; 16:1845). The optimal timing for initiating HAART in patients with newly diagnosed TB is not known.

Patients on HAART – Rifamycins induce hepatic CYP3A4 enzymes and can accelerate metabolism of protease inhibitors and some non-nucleoside reverse transcriptase inhibitors (NNRTIs), decreasing their serum concentrations, possibly to ineffective levels. The degree to which each drug activates CYP3A4 differs: rifampin is the most potent and rifabutin the least. In addition, rifabutin is a substrate for CYP3A4; protease inhibitors slow its metabolism, increasing serum concentrations and possibly toxicity.

Options with Rifampin – Standard 4-drug treatment regimens including rifampin can be given to HIV-infected patients with active TB who are simultaneously receiving HAART if the HAART regimen consists of efavirenz (Sustiva) and two nucleoside reverse transcriptase inhibitors (NRTIs). Standard doses of rifampin can also be used in patients taking either ritonavir (Norvir), ritonavir/saquinavir or ritonavir/lopinavir (Kaletra) as the protease inhibitor, combined with 2 NRTIs. Nevirapine (Viramune) with two NRTIs can also be given with standard dose rifampin (MMWR Morbid Mortal Wkly Rep 2004; 53:37).

Options with Rifabutin – Two alternative regimens are based on the fact that rifabutin appears to be as effective as rifampin against TB, and has less effect on protease inhibitor levels. The first substitutes low-dose
Drugs for Tuberculosis

rifabutin (150 mg once/day or 300 mg 3x/week) for rifampin in the standard regimen (i.e., isoniazid, rifabutin, pyrazinamide and ethambutol) and uses higher than usual doses of indinavir (Crixivan) or nelfinavir (Viracept), or standard doses of amprenavir (Agenerase) or fosamprenavir (Lexiva) as the protease inhibitor. The second decreases the rifabutin dose further to 150 mg every other day or 3 times weekly and gives it with standard doses of atazanavir (Reyataz), ritonavir/lopinavir (Kaletra) or ritonavir alone or combined with other protease inhibitors. Saquinavir (Fortovase, Invirase) alone should not be used. If the HAART regimen contains nevirapine, the usual dose of rifabutin should be used. Higher rifabutin doses (450-600 mg daily) are needed if the HAART regimen contains efavirenz.

TB IN PREGNANCY

Treatment of TB should be initiated in pregnancy when there is moderate to high suspicion of disease because active infection during pregnancy poses a risk to the fetus that is greater than the risk of adverse drug effects. The initial regimen should include isoniazid, rifampin and ethambutol. Each of these drugs crosses the placenta, but none is teratogenic. Pyrazinamide is also probably safe in pregnancy and some Medical Letter consultants would use it in addition to or as a substitute for ethambutol, depending on results of susceptibility testing (G Bothamlen, Drug Saf 2001; 24:553). If pyrazinamide is not used, treatment should be continued for at least 9 months.

Limited data is available on the treatment of MDRTB in pregnancy. Regimens using combinations of amikacin, ethionamide, PAS, cycloserine, capreomycin and fluoroquinolones have been successful without causing fetal adverse effects, although these drugs are not generally considered safe in pregnancy (S Shin et al, Clin Infect Dis 2003; 36:996; KD Lessnau and S Qarah, Chest 2003; 123:953).
ADVERSE EFFECTS

Isoniazid – Serum aminotransferase activity increases in 10% to 20% of patients taking isoniazid, especially in the early weeks of treatment, but often returns to normal even when the drug is continued. Severe liver damage due to isoniazid is less common than previously thought (CM Nolan et al, JAMA 1999; 281:1014). It is more likely to occur in patients more than 35 years old, but can also occur in younger patients. Routine monitoring is not necessary except for patients with pre-existing liver disease. Medical Letter consultants recommend stopping isoniazid when serum aspartate aminotransferase activity reaches five times the upper limit of normal or if the patient has symptoms of hepatitis, but it can sometimes be re-started later.

Peripheral neuropathy occurs rarely and can usually be prevented by supplementation with pyridoxine (Vitamin B₆, 10-25 mg/day), which is recommended for patients with chronic alcohol use, diabetes, chronic renal failure or HIV infection, and for those who are pregnant, breast feeding or malnourished.

Rifamycins – Rifampin, like isoniazid, is potentially hepatotoxic, and gastrointestinal disturbances, morbilliform rash and thrombocytopenic purpura can occur. Whenever possible, rifampin should be continued despite minor adverse reactions such as pruritus and gastrointestinal upset. When taken erratically, the drug can cause a febrile “flu-like” syndrome and, very rarely, shortness of breath, hemolytic anemia, shock and acute renal failure. Patients should be warned that rifampin may turn urine, tears and other body fluids reddish-orange and can permanently stain contact lenses and lens implants.

Rifampin is an inducer of CYP isozymes 3A4, 2C9, 2C19, 2D6, 2B6, and 2C8. It can increase the metabolism and decrease the effect of many other drugs, including oral contraceptives (patients should be advised to use another method of contraception), sulfonylureas such as glyburide.
Drugs for Tuberculosis

(Diabeta, and others), corticosteroids, warfarin (Coumadin, and others), quinidine, methadone (Dolophine, and others), delavirdine (Rescriptor), clarithromycin (Biaxin), ketoconazole (Nizoral, and others), itraconazole (Sporanox) and fluconazole (Diflucan), as well as protease inhibitors (Medical Letter Adverse Drug Interactions Program).

Rifabutin and **rifapentine** have adverse effects similar to those of rifampin. Rifabutin can also cause uveitis, skin hyperpigmentation and a lupus-like syndrome, but is less likely than rifampin to interact with other drugs.

Other Drugs – Pyrazinamide can cause morbilliform rash, arthralgias and asymptomatic hyperuricemia, and blocks the hypouricemic action of allopurinol (Zyloprim, and others). Gastrointestinal disturbances and hepatotoxicity can occur. **Ethambutol** can cause optic neuritis, but this is very rare when using a dosage of 15 mg/kg daily. Testing of visual acuity should be performed at the start of therapy, and monthly if the drug is continued past 2 months. The decision to use ethambutol in children too young to have visual acuity monitored must take into consideration the risk/benefit for each particular patient.

Streptomycin causes ototoxicity (usually vestibular disturbance) and, less frequently, renal toxicity. **Amikacin** and **kanamycin** commonly cause tinnitus and high frequency hearing loss. These drugs and **capreomycin** can also cause nephro- and vestibular toxicity. **Cycloserine** can cause psychiatric symptoms and seizures. **Ethionamide** has been associated with gastrointestinal, hepatic and thyroid toxicity. A delayed-release granular formulation of **aminosalicylic acid** (PAS, Paser) is better tolerated than older formulations. **Fluoroquinolones** are usually well-tolerated, but can cause gastrointestinal and CNS disturbances.
CONCLUSION

All isolates of *M. tuberculosis* should be tested for antimicrobial susceptibility. Initial therapy for most patients with active TB should include at least isoniazid, a rifamycin, pyrazinamide and ethambutol until susceptibility is known. Directly observed therapy (DOT) by a health care worker should be considered for all cases of active TB to minimize failure rates and the risk of emergence of drug resistance. Confirmed multidrug-resistant tuberculosis (MDRTB) should be treated with DOT and a regimen that includes at least 4 drugs to which the organism is susceptible; the total duration of therapy usually is 18 to 24 months.
Antimicrobial prophylaxis can decrease the incidence of infection, particularly surgical site infection, after certain operations, but this benefit must be weighed against the risks of toxic and allergic reactions, emergence of resistant bacteria, adverse drug interactions, superinfection and cost. Medical Letter consultants generally recommend antimicrobial prophylaxis only for procedures with high infection rates, those involving implantation of prosthetic material, and those in which the consequences of infection are likely to be especially serious.

Recommendations for prevention of surgical site infection are listed in the table that begins on page 100. Recommendations for prevention of bacterial endocarditis in patients with valvular heart disease, prosthetic heart valves or other cardiac abnormalities are not included here; see page 109.

CHOICE OF A PROPHYLACTIC AGENT

An effective prophylactic regimen should be directed against the most likely infecting organisms, but need not eradicate every potential pathogen. For most procedures, **cefazolin** (*Ancef*, and others), which has a moderately long plasma half-life and is active against most staphylococci and streptococci, has been effective.

Some Exceptions – For procedures that might involve exposure to bowel anaerobes, including *Bacteroides fragilis*, cefotetan (*Cefotan*)
Antimicrobial Prophylaxis for Surgery

or cefoxitin (Mefoxin, and others) are preferred because they are more active than cefazolin against these organisms. In institutions where methicillin-resistant Staphylococcus aureus (MRSA) or methicillin-resistant coagulase-negative staphylococci are important post-operative pathogens, vancomycin (Vancocin, and others) can be used, but routine use of vancomycin for prophylaxis should be discouraged because it may promote emergence of vancomycin-resistant organisms and, at least in one study, was no better than cefazolin at preventing surgical site infection after cardiac surgery in a setting with a high prevalence of MRSA (R Finkelstein et al, J Thorac Cardiovasc Surg 2002; 123:326). Long preoperative hospitalizations are associated with increased risk of infection with an antibiotic-resistant organism; local resistance patterns should be taken into account.

Not Recommended – Third-generation cephalosporins, such as cefotaxime (Claforan), ceftriaxone (Rocephin), cefoperazone (Cefobid), ceftazidime (Fortaz, and others), or ceftizoxime (Cefizox), and fourth-generation cephalosporins such as cefepime (Maxipime) should not be used for routine surgical prophylaxis because they are expensive, some are less active than cefazolin against staphylococci, their spectrum of activity includes organisms rarely encountered in elective surgery, and their widespread use for prophylaxis would promote emergence of resistance.

PENICILLIN ALLERGY

Cefazolin is often used for prophylaxis in penicillin-allergic patients, but such patients rarely may have allergic reactions to cephalosporins. When allergy prevents use of a cephalosporin, vancomycin or clindamycin can be used, but neither is effective against gram-negative bacteria, so some Medical Letter consultants would add gentamicin (Garamycin, and others), ciprofloxacin (Cipro, and others), levofloxacin (Levaquin, 750 mg...
Antimicrobial Prophylaxis for Surgery

CHOICE OF DRUG FOR PREVENTION OF SURGICAL SITE INFECTION

<table>
<thead>
<tr>
<th>Nature of operation</th>
<th>Common pathogens</th>
<th>Recommended drugs</th>
<th>Adult dosage before surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac</td>
<td>Staphylococcus aureus, S. epidermidis</td>
<td>Cefazolin or Cefuroxime</td>
<td>1-2 grams IV/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR Vancomycin</td>
<td>1.5 grams IV/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 gram IV</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophageal, gastroduodenal</td>
<td>Enteric gram-negative bacilli, gram-positive cocci</td>
<td>High risk only: Cefazolin</td>
<td>1-2 grams IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR Cefuroxime</td>
<td>1.5 grams IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vancomycin</td>
<td>1 gram IV</td>
</tr>
<tr>
<td>Biliary tract</td>
<td>Enteric gram-negative bacilli, enterococci, clostridia</td>
<td>High risk only: Cefazolin</td>
<td>1-2 grams IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR Metronidazole</td>
<td>0.5-1 grams IV</td>
</tr>
<tr>
<td>Colorectal</td>
<td>Enteric gram-negative bacilli, anaerobes, enterococci</td>
<td>Oral: Neomycin + Erythromycin base</td>
<td>1-2 grams IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR Metronidazole Parenteral: Cefotetan OR Cefoxitin</td>
<td>1-2 grams IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR Neomycin</td>
<td>1-2 grams IV</td>
</tr>
<tr>
<td>Appendectomy, non-perforated</td>
<td>Enteric gram-negative bacilli, anaerobes, enterococci</td>
<td>Cefotetan OR Cefazolin</td>
<td>1-2 grams IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Metronidazole</td>
<td>0.5-1 grams IV</td>
</tr>
<tr>
<td>Ruptured viscus</td>
<td>Enteric gram-negative bacilli, anaerobes, enterococci</td>
<td>Cefoxitin or Cefotetan</td>
<td>1-2 g IV q12h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Gentamicin</td>
<td>1.5 mg/kg IV q12h</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>Enteric gram-negative bacilli, enterococci</td>
<td>High risk only: Ciprofloxacin</td>
<td>500 mg PO or 400 mg IV</td>
</tr>
<tr>
<td>Gynecologic and Obstetric</td>
<td>Enteric gram-negative bacilli, anaerobes, Gp B strep, enterococci</td>
<td>Cefotetan or Cefoxitin</td>
<td>1-2 grams IV/2</td>
</tr>
<tr>
<td>Cesarean section</td>
<td>same as for hysterectomy</td>
<td>Cefazolin</td>
<td>1-2 grams IV after cord clamping</td>
</tr>
<tr>
<td>Abortion</td>
<td>same as for hysterectomy</td>
<td>First trimester, high risk: Aqueous penicillin G OR Doxycycline</td>
<td>2 mill units IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Second trimester: Cefazolin</td>
<td>300 mg PO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2 grams IV</td>
<td></td>
</tr>
</tbody>
</table>

1. Parenteral prophylactic antimicrobials can be given as a single IV dose begun 60 minutes or less before the operation. For prolonged operations, additional intraoperative doses should be given at intervals 1-2 times the half-life of the drug for the duration of the procedure. If vancomycin or a fluoroquinolone is used, the infusion should be started 60-120 minutes before incision in order to minimize the possibility of an infusion reaction close to the time of induction of anesthesia and to have adequate tissue levels at the time of incision.
2. Some consultants recommend an additional dose when patients are removed from bypass during open-heart surgery.
3. For hospitals in which methicillin-resistant *S. aureus* and *S. epidermidis* are a frequent cause of postoperative wound infection, oral prophylaxis is appropriate. For patients previously colonized with MRSA, or for those who are allergic to penicillins or cephalosporins, rapid IV administration may cause hypotension, which could be especially dangerous during induction of anesthesia. Even when the drug is given over 60 minutes, hypotension may occur; treatment with diphenhydramine (Benadryl) and other oral drugs may be helpful. For procedures in which enteric gram-negative bacilli are likely pathogens, such as vascular surgery involving a groin incision, cefazolin or cefuroxime should be included in the prophylaxis regimen for patients not allergic to cephalosporins; ciprofloxacin, levofloxacin (750 mg), gentamicin, or aztreonam, each one in combination with vancomycin, can be used in patients who cannot tolerate a cephalosporin.
4. Morbid obesity, esophageal obstruction, decreased gastric acidity or gastrointestinal motility.
5. Age >70 years, acute cholecystitis, non-functioning gall bladder, obstructive jaundice or common duct stones.
6. High risk for infection with *Escherichia coli* or *Klebsiella pneumoniae*.
7. For patients allergic to cephalosporins, clindamycin with either gentamicin, ciprofloxacin, levofloxacin (750 mg) or aztreonam is a reasonable alternative.
CHOICE OF DRUG FOR PREVENTION OF SURGICAL SITE INFECTION

<table>
<thead>
<tr>
<th>Nature of operation</th>
<th>Common pathogens</th>
<th>Recommended drugs</th>
<th>Adult dosage before surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head and Neck Surgery</td>
<td>Anaerobes, enteric gram-negative bacilli, S. aureus</td>
<td>clindamycin + gentamicin OR cefazolin</td>
<td>600-900 mg IV 1.5 mg/kg IV 1-2 grams IV</td>
</tr>
<tr>
<td>Neurosurgery</td>
<td>S. aureus, S. epidermidis</td>
<td>cefazolin OR vancomycin³</td>
<td>1-2 grams IV 1 gram IV</td>
</tr>
<tr>
<td>Ophthalmic</td>
<td>S. epidermidis, S. aureus, streptococci, enteric gram-negative bacilli, Pseudomonas</td>
<td>gentamicin, tobramycin, ciprofloxacin, gentamicin levofloxacin, moxifloxacin, ofloxacin or neomycin-gramicidin-polymyxin B cefazolin</td>
<td>multiple drops topically over 2 to 24 hours 100 mg subconjunctivally</td>
</tr>
<tr>
<td>Orthopedic</td>
<td>S. aureus, S. epidermidis</td>
<td>cefazolin¹² OR vancomycin³,¹²</td>
<td>1-2 grams IV 1 gram IV</td>
</tr>
<tr>
<td>Thoracic (Non-Cardiac)</td>
<td>S. aureus, S. epidermidis, streptococci, enteric gram-negative bacilli</td>
<td>cefazolin or cefuroxime OR vancomycin³</td>
<td>1-2 grams IV 1.5 grams IV 1 gram IV</td>
</tr>
<tr>
<td>Vascular Arterial surgery involving a prosthesis, the abdominal aorta, or a groin incision</td>
<td>S. aureus, S. epidermidis, enteric gram-negative bacilli</td>
<td>cefazolin OR vancomycin³</td>
<td>1-2 grams IV 1 gram IV</td>
</tr>
<tr>
<td>Lower extremity amputation for ischemia</td>
<td>S. aureus, S. epidermidis, enteric gram-negative bacilli, clostridia</td>
<td>cefazolin OR vancomycin³</td>
<td>1-2 grams IV 1 gram IV</td>
</tr>
</tbody>
</table>

8. Therapy is often continued for about five days. Ruptured viscus in postoperative setting (dehiscence) requires antibacterials to include coverage of nosocomial pathogens.

9. Urine culture positive or unavailable, preoperative catheter, transrectal prostatic biopsy, placement of prosthetic material.

10. Patients with previous pelvic inflammatory disease, previous gonorrhea or multiple sex partners.

11. Divided into 100 mg one hour before the abortion and 200 mg one half hour after.

12. If a tourniquet is to be used in the procedure, the entire dose of antibiotic must be infused prior to its inflation.
Antimicrobial Prophylaxis for Surgery

once) or aztreonam (Azactam), particularly for colorectal procedures, hysterectomies, and vascular surgery involving groin incisions.

TIMING AND NUMBER OF DOSES

It has been common practice to give antibiotics at the time of anesthesia induction, which results in adequate serum and tissue levels of the drugs; there is no consensus on whether the infusion must be completed by the time of incision. For procedures lasting less than 4 hours, Medical Letter consultants recommend a single intravenous dose of an antimicrobial started within 60 minutes before the initial skin incision, which should provide adequate tissue concentrations throughout the procedure. If vancomycin or a fluoroquinolone is used, the infusion should begin 60-120 minutes before the incision is made in order to minimize the risk of antibiotic-associated reactions around the time of anesthesia induction and ensure adequate tissue levels of the drug at the time of incision.

Additional Doses – If the procedure is prolonged (>4 hours), major blood loss occurs, or an antimicrobial with a short half-life is used, redosing every 1-2 half-lives of the drug should provide adequate antimicrobial concentrations during the procedure (cefazolin q2-5 hours, cefuroxime q3-4 hours, cefoxitin q2-3 hours, cefotetan and clindamycin q3-6 hours, and vancomycin q6-12 hours). Published studies of antimicrobial prophylaxis often use one or two doses postoperatively in addition to one dose just before surgery. Most Medical Letter consultants believe, however, that postoperative doses are unnecessary after wound closure and increase the risk of antimicrobial resistance.

CARDIAC

Prophylactic antibiotics can decrease the incidence of infection after cardiac surgery, and intraoperative redosing has been associated with a
decreased risk of postoperative infection in procedures lasting >400 minutes (G Zanetti et al, Emerg Infect Dis 2001; 7:828). Antimicrobial prophylaxis for prevention of device-related infections has not been rigorously studied. It is, however, generally given before placement of electrophysiologic devices, ventricular assist devices, ventriculoatrial shunts and arterial patches (LM Baddour et al, Circulation 2003; 108:2015). A meta-analysis of seven randomized studies of antimicrobial prophylaxis for implantation of permanent pacemakers showed a statistically significant reduction in the incidence of wound infection, inflammation or skin erosion (A DaCosta et al, Circulation 1998; 97:1796).

GASTROINTESTINAL

Antibiotic prophylaxis is recommended for esophageal surgery in the presence of obstruction, which increases the risk of infection. After gastroduodenal surgery the risk of infection is high when gastric acidity and gastrointestinal motility are diminished by obstruction, hemorrhage, gastric ulcer or malignancy, or by therapy with an H2-blocker such as ranitidine (Zantac, and others) or a proton pump inhibitor such as omeprazole (Prilosec, and others), and is also high in patients with morbid obesity (AJ Chong and EP Dellinger, Curr Treat Options Infect Dis 2003; 5:387). A dose of cefazolin before surgery can decrease the incidence of postoperative infection in these circumstances. Prophylactic antibiotics are not indicated for routine gastroesophageal endoscopy, but most clinicians use them before placement of a percutaneous gastrostomy (WK Hirota et al, Gastrointest Endosc 2003; 58:475; I Ahmad et al, Aliment Pharmacol Ther 2003; 18:209).

Antimicrobials are recommended before biliary tract surgery for patients with a high risk of infection — those more than 70 years old and those with acute cholecystitis, a non-functioning gallbladder, obstructive

Preoperative antibiotics can decrease the incidence of infection after colorectal surgery; for elective operations, an oral regimen of neomycin (not available in Canada) plus either erythromycin or metronidazole appears to be as effective as parenteral drugs. Many surgeons in the US use a combination of oral and parenteral agents (O Zmora et al, Dis Colon Rectum 2001; 44:1537). It is controversial whether the combination is more effective than either alone (RT Lewis, Can J Surg 2002; 45:173). Preoperative antimicrobials can decrease the incidence of infection after surgery for acute appendicitis (BR Andersen et al, Cochrane Database Syst Rev 2003; 2:CD001439).

If perforation has occurred, antibiotics are often used therapeutically rather than prophylactically and are continued for 5-7 days. In studies of penetrating abdominal and intestinal injuries, however, a short course (12-24 hours) was as effective as 5 days of therapy (EP Dellinger et al, Arch Surg 1986; 121:23; A Bozorgzadeh et al, Am J Surg 1999; 177:125; EE Cornwell 3rd et al, J Gastrointest Surg 1999; 3:648).

GENITOURINARY

Medical Letter consultants do not recommend antimicrobials before most urological operations in patients with sterile urine. When the urine culture is positive or unavailable, or the patient has a preoperative urinary catheter, patients should be treated to sterilize the urine before sur-
Antimicrobial Prophylaxis for Surgery

Surgery or receive a single preoperative dose of an appropriate agent. A meta-analysis that included 4260 patients with sterile preoperative urine undergoing **transurethral prostatectomy** concluded that antimicrobial prophylaxis decreased the incidence of postoperative bacteriuria and septicemia (A Berry and A Barratt, J Urol 2002; 167:571). Prophylaxis is recommended before **transrectal prostatic biopsies** because urosepsis has occurred (M Aron et al, BJU Int 2000; 85:682). Surgical prophylaxis is generally used if a **urologic prosthesis** (penile implant, artificial sphincter, synthetic pubovaginal sling, bone anchors for pelvic floor reconstruction) will be placed (A Gomelsky and RR Dmochowski, Curr Pharm Des 2003; 9:989).

GYNECOLOGIC AND OBSTETRIC

HEAD AND NECK

Prophylaxis with antimicrobials has decreased the incidence of surgical site infection after head and neck operations that involve an incision through the oral or pharyngeal mucosa. One study in 74 patients
undergoing surgery for head and neck cancer who received clindamycin beginning immediately preoperatively found no difference in infectious complications between continuing the drug for 24 hours (3 doses) or 5 days (15 doses); unfortunately, there was no single-dose group (WR Carroll et al, Arch Otolaryngol Head Neck Surg 2003; 129:771).

NEUROSURGERY

An antistaphylococcal antibiotic can decrease the incidence of infection after craniotomy. In **spinal surgery**, the infection rate after conventional lumbar discectomy is low, but the serious consequences of surgical site infection have led many neurosurgeons to use perioperative antibiotics. A meta-analysis concluded that antibiotic prophylaxis is beneficial in preventing infection even in low-risk spinal surgery (FG Barker II, Neurosurgery 2002; 51:391). Infection rates are higher after prolonged spinal surgery or spinal procedures involving fusion or insertion of foreign material, and prophylactic antibiotics are often used (JB Dimick et al, Spine 2000; 25:2544). Studies of antimicrobial prophylaxis for implantation of permanent **cerebrospinal fluid shunts** have produced conflicting results.

OPHTHALMIC

Data are limited on the effectiveness of antimicrobial prophylaxis for ophthalmic surgery, but postoperative endophthalmitis can be devastating. Most ophthalmologists use antimicrobial eye drops for prophylaxis, and some also give a subconjunctival injection or add antimicrobial drops to the intraocular irrigation solution (DV Leaming, J Cataract Refract Surg 2003; 29:1412). There is no consensus supporting a particular choice, route or duration of antimicrobial prophylaxis (TJ Liesegang, Cornea 1999; 18:383). Preoperative povidone-iodine applied to the skin and conjunctiva has been associated with a lower
incidence of culture-proven endophthalmitis (TA Ciulla et al, Ophthalmology 2002; 109:13). There is no evidence that prophylactic antibiotics are needed for procedures that do not invade the globe.

ORTHOPEDIC

Prophylactic antistaphylococcal drugs administered preoperatively can decrease the incidence of both early and late infection following joint replacement. They also decrease the rate of infection in compound or open fractures and when hip and other fractures are treated with internal fixation by nails, plates, screws or wires. If a proximal tourniquet is used for the procedure, the antibiotic infusion must be completed prior to its inflation. One large randomized trial found a single dose of a cephalosporin more effective than placebo in preventing wound infection after surgical repair of closed fractures (H Boxma et al, Lancet 1996; 347:1133). A prospective randomized study in patients undergoing diagnostic and operative arthroscopic surgery concluded that antibiotic prophylaxis is not indicated (JA Wieck et al, Orthopedics 1997; 20:133).

THORACIC (NON-CARDIAC)

Antibiotic prophylaxis is given routinely in thoracic surgery, but supporting data are sparse. In one study, a single preoperative dose of cefazolin before pulmonary resection led to a decrease in the incidence of surgical site infection, but not of pneumonia or empyema (RAznar et al, Eur J Cardiothorac Surg 1991; 5:515). Other trials have found that multiple doses of a cephalosporin can prevent infection after closed-tube thoracostomy for chest trauma with hemo- or pneumothorax (RP Gonzalez and MR Holevar, Am Surg 1998; 64:617). Insertion of chest tubes for other indications, such as spontaneous pneumothorax, does not require antimicrobial prophylaxis.
Antimicrobial Prophylaxis for Surgery

VASCULAR

Preoperative administration of a cephalosporin decreases the incidence of postoperative surgical site infection after arterial reconstructive surgery on the abdominal aorta, vascular operations on the leg that include a groin incision, and amputation of the lower extremity for ischemia. Many experts also recommend prophylaxis for implantation of any vascular prosthetic material, such as grafts for vascular access in hemodialysis. Prophylaxis is not indicated for carotid endarterectomy or brachial artery repair without prosthetic material.

OTHER PROCEDURES

Not indicated – Antimicrobial prophylaxis is generally not indicated for cardiac catheterization, varicose vein surgery, most dermatologic and plastic surgery, arterial puncture, thoracentesis, paracentesis, repair of simple lacerations, outpatient treatment of burns, dental extractions or root canal therapy because the incidence of surgical site infections is low. A study in patients undergoing cosmetic procedures who did not receive prophylactic antibiotics found that infection was more common after longer operations; the authors concluded that a single dose of cefazolin might be helpful before operations that last more than 3 hours (CA Fatica et al, Plast Reconstr Surg 2002; 109:2570).

Controversial – The need for prophylaxis in breast surgery, herniorrhaphy and other "clean" surgical procedures has been controversial (R Knight et al, Am J Surg 2001; 182:682; DF D’Amico et al, J Chemother 2001; 13 spec No 1:108). Medical Letter consultants generally do not recommend surgical prophylaxis for these procedures unless prosthetic material (synthetic mesh, saline implants, tissue expanders) will be placed, because of the low rate of infection, the low morbidity of these infections and the potential adverse effects of using prophylaxis in such a large number of patients.
Many physicians believe that antimicrobial prophylaxis before procedures that may cause transient bacteremia can prevent endocarditis and prosthetic joint infection in patients at increased risk for these disorders. The effectiveness of this common practice has never been established by controlled trials in humans.\(^1\) The drugs and dosages in the table are based on those recommended by the American Heart Association for prevention of endocarditis.\(^2\)

ENDOCARDITIS — The risk of endocarditis is considered high in patients with previous bacterial endocarditis, prosthetic heart valves, complex cyanotic congenital heart disease such as tetralogy of Fallot, or surgically constructed systemic pulmonary shunts or conduits. The risk is considered sufficient to justify prophylaxis in patients with other forms of congenital cardiac malformation (but not isolated secundum atrial septal defect), acquired valvular disease (such as rheumatic), hypertrophic cardiomyopathy, and mitral valve prolapse with thickened leaflets or regurgitation.

PROSTHETIC DEVICE INFECTIONS — Some infectious disease specialists recommend antimicrobial prophylaxis before procedures in patients with vascular grafts or orthopedic prostheses.\(^3\) Guidelines have been suggested for antimicrobial prophylaxis of patients with total joint arthroplasty undergoing dental or genitourinary procedures.\(^4,5\) No data exist from controlled human trials to support or refute these practices. For patients undergoing other invasive procedures that may result in transient bacteremia, using an approach similar to that for endocarditis prevention seems reasonable.
Antibacterial Prophylaxis for Dental, GI and GU Procedures

Prophylaxis for Endocarditis and Prosthetic Device Infection

<table>
<thead>
<tr>
<th>Procedure Type</th>
<th>DOSAGE FOR ADULTS</th>
<th>DOSAGE FOR CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENTAL, ESOPHAGEAL AND UPPER RESPIRATORY PROCEDURES<sup>3</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin<sup>4,5</sup> (Amoxil, and others)</td>
<td>2 g 1 hour before</td>
<td>50 mg/kg 1 hour before</td>
</tr>
<tr>
<td>Penicillin allergy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clindamycin (Cleocin, and others)</td>
<td>600 mg 1 hour before</td>
<td>20 mg/kg 1 hour before</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalexin<sup>6</sup> (Keflex, and others) or Cefadroxil (Duricef, and others)<sup>6</sup></td>
<td>2 g 1 hour before</td>
<td>50 mg/kg 1 hour before</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin<sup>5</sup> (Zithromax) or Clarithromycin<sup>5</sup> (Biaxin)</td>
<td>500 mg 1 hour before</td>
<td>15 mg/kg 1 hour before</td>
</tr>
<tr>
<td>Parenteral (for patients unable to take oral drugs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin<sup>5</sup> (Omnipen, and others),</td>
<td>2 g IM or IV within 30 minutes before</td>
<td>50 mg/kg IM or IV within 30 minutes before</td>
</tr>
<tr>
<td>Penicillin allergy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clindamycin</td>
<td>600 mg IV within 30 minutes before</td>
<td>20 mg/kg IV within 30 minutes before</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefazolin<sup>6</sup> (Ancef, and others)</td>
<td>1 g IM or IV within 30 minutes before</td>
<td>25 mg/kg IM or IV within 30 minutes before</td>
</tr>
<tr>
<td>GASTROINTESTINAL (EXCLUDING ESOPHAGEAL) AND GENITOURINARY PROCEDURES<sup>3</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin<sup>4,5</sup></td>
<td>2 g 1 hour before</td>
<td>50 mg/kg 1 hour before</td>
</tr>
<tr>
<td>Parenteral<sup>7</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin<sup>5,8</sup></td>
<td>2 g IM or IV within 30 minutes before</td>
<td>50 mg/kg IM or IV within 30 minutes before</td>
</tr>
<tr>
<td>Gentamicin<sup>9</sup> (Garamycin, and others)</td>
<td>1.5 mg/kg (120 mg max.) IM or IV within 30 minutes before</td>
<td>1.5 mg/kg IM or IV within 30 minutes before</td>
</tr>
<tr>
<td>Penicillin allergy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancomycin (Vancocin, and others)</td>
<td>1 g IV infused slowly over 1 hour starting 1 hour before</td>
<td>20 mg/kg IV infused slowly over 1 hour starting 1 hour before</td>
</tr>
<tr>
<td>Gentamicin<sup>9</sup></td>
<td>1.5 mg/kg (120 mg max.) IM or IV within 30 minutes before</td>
<td>1.5 mg/kg IM or IV within 30 minutes before</td>
</tr>
</tbody>
</table>

1. Viridans streptococci are the most common cause of endocarditis or joint infection after dental or upper respiratory procedures; enterococci are the most common cause after gastrointestinal or genitourinary procedures.
2. Should not exceed adult dosage.
3. For a review of the risk of bacteremia with various procedures, see AS Dajani et al, JAMA 1997; 277:1794 and WK Hirota et al, Gastrointest Endosc 2003; 58:475. Among dental procedures, some experts believe that endocarditis prophylaxis should only be offered to at-risk patients undergoing tooth extractions and gingival surgery, including implant placement, and to those with prosthetic cardiac valves or a history of previous endocarditis (DT Durack, Ann Intern Med 1998; 129:829).
4. Aminocillin remains the drug of choice for patients without penicillin allergy because of its excellent bioavailability and generally good activity against streptococci and enterococci.
6. High-risk patients given parenteral ampicillin before the procedure should receive a dose of ampicillin 1 g IM or IV or amoxicillin 1 g PO six hours afterwards.
7. Gentamicin is usually added for patients with a high risk of endocarditis.
The risk of hematogenous joint infection is thought to be increased in the first two years after a total joint replacement and in patients with a history of previous prosthetic joint infection. Prophylaxis is not indicated for those who have only orthopedic pins, plates or screws. Most experts would not recommend prophylaxis for patients with other implanted foreign bodies, such as dialysis catheters, ventriculoperitoneal shunts, cardiac pacemakers and/or defibrillators.

Lyme disease in North America is caused by the spirochete *Borrelia burgdorferi*, which is transmitted to humans by *Ixodes scapularis* or *pacificus* ticks. These ticks may also carry other pathogens; coinfection with *Babesia microti* or *Anaplasma phagocytophilum* (formerly *Ehrlichia*) has been reported. In 2001 and 2002, 12 states (CT, DE, ME, MD, MA, MI, NH, NJ, NY, PA, RI, WI) reported about 95% of all the Lyme disease in the US, but cases occurred in all states except HI, MT and OK. Most Lyme disease in North America occurs between May and September.

THE DISEASE — About 70-80% of patients infected by *B. burgdorferi* develop the characteristic skin lesion, erythema migrans, which occurs at the site of the tick bite 3 to 30 days after the tick has detached. Fever, headache, malaise, arthralgias and myalgia usually accompany early disease. Multiple (secondary) skin lesions occur in about 15% of patients. Patients with untreated Lyme disease may develop cardiac involvement, neurologic disease or migratory musculoskeletal pain. Late manifestations of Lyme disease include arthritis, typically of the knee, and various neurologic conditions, including peripheral neuropathy and subtle encephalopathy with cognitive defects. Clinical manifestations of the disease are somewhat different in Europe because other borrelia species cause human infection there.

DIAGNOSIS — In endemic areas, Lyme disease is diagnosed by recognition of erythema migrans. IgG antibodies to *B. burgdorferi* are usually detectable 4 to 6 weeks after the initial infection. If an enzyme-linked immunosorbent assay (ELISA) or immunofluorescent assay (IFA) is positive or equivocal, the specimen should also be tested with a standardized Western blot.
PROPHYLAXIS — No vaccine is currently available to prevent Lyme disease in humans. Avoidance of ticks and use of tick repellents such as DEET or picaridin, or the insecticide permethrin on clothing can prevent Lyme disease.6 Since transmission of \textit{B. burgdorferi} is more likely with prolonged tick attachment, prompt removal of ticks can also prevent disease.7 Whether early antibiotic prophylaxis is indicated after a tick bite is controversial; the strongest indication is in a highly endemic area when an engorged tick is attached for 48 hours or more. In one study of 482 patients who had removed an attached \textit{I. scapularis} tick, a single 200-mg dose of doxycycline (\textit{Vibramycin}, and others) within 72 hours of tick removal was 87\% effective in preventing development of erythema migrans at the site of the bite.8 In another prophylactic study, 10 days of amoxicillin (\textit{Amoxil}, and others) appeared to be effective (no treated patients developed the disease), but the incidence of infection in the placebo group was too low to permit any conclusions.9

ERYTHEMA MIGRANS — Oral antibiotic therapy shortens the duration of the rash and generally prevents development of late sequelae. Among the 3 drugs used for this indication, only doxycycline is also effective against \textit{A. phagocytophilum} infection; it should not be used in pregnant women or children less than eight years old. One double-blind controlled trial in 180 patients with erythema migrans showed that 10 days treatment with doxycycline was as effective as 20 days. Some patients remained symptomatic at the end of antibiotic therapy, but they continued to improve after treatment at the same rate regardless of whether they were treated for 10 or 20 days. One patient in the 10-day group developed meningitis.10

Amoxicillin is as effective as doxycycline and is preferred for children less than 8 years old and pregnant or lactating women. Cefuroxime axetil (\textit{Ceftin}) is also effective, but much more expensive. Macrolides such as
Treatment of Lyme Disease

TREATMENT OF LYME DISEASE

<table>
<thead>
<tr>
<th>DRUG</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERYTHEMA MIGRANS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxycycline³ (Vibramycin, and others) or Amoxicillin (Amoxil, and others) or Cefuroxime axetil (Ceftin)</td>
<td>100 mg PO bid x 10-21d</td>
<td>≥8 yrs; 1-2 mg/kg bid</td>
</tr>
<tr>
<td>or Amoxicillin/clavulanic acid (Augmentin)</td>
<td>500 mg PO tid x 14-21d</td>
<td>25-50 mg/kg/d divided tid</td>
</tr>
<tr>
<td>or Cefuroxime axetil (Ceftin)</td>
<td>500 mg PO bid x 14-21d</td>
<td>30 mg/kg/d divided bid</td>
</tr>
<tr>
<td>NEUROLOGIC DISEASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facial nerve palsy or Amoxicillin</td>
<td>2 g/d IV once/d x 14-28d</td>
<td>75-100 mg/kg once/d IV</td>
</tr>
<tr>
<td>or Ceftriaxone⁴ (Rocephin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or More serious disease</td>
<td>100 mg PO bid x 14-21d</td>
<td>≥8 yrs; 1-2 mg/kg bid</td>
</tr>
<tr>
<td>or Amoxicillin</td>
<td>500 mg PO tid x 14-21d</td>
<td>25-50 mg/kg/d divided tid</td>
</tr>
<tr>
<td>or Ceftriaxone⁴</td>
<td>2 g once/d IV x 14-21d</td>
<td></td>
</tr>
<tr>
<td>CARDIAC DISEASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild (first degree AV block) or Amoxicillin</td>
<td>2 g once/d IV x 14-21d</td>
<td></td>
</tr>
<tr>
<td>or Ceftriaxone⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or More serious disease⁵</td>
<td>100 mg PO bid x 14-21d</td>
<td>≥8 yrs; 1-2 mg/kg bid</td>
</tr>
<tr>
<td>or Amoxicillin</td>
<td>500 mg PO tid x 14-21d</td>
<td>25-50 mg/kg/d divided tid</td>
</tr>
<tr>
<td>or Ceftriaxone⁴</td>
<td>2 g once/d IV x 14-21d</td>
<td>50-100 mg/kg once/d IV</td>
</tr>
<tr>
<td>ARTHRITIS⁶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxycycline³ or Amoxicillin or Ceftriaxone⁴</td>
<td>100 mg PO bid x 28d</td>
<td>≥8 yrs; 1-2 mg/kg bid</td>
</tr>
<tr>
<td>or Amoxicillin</td>
<td>500 mg PO tid x 28d</td>
<td>25-50 mg/kg/d divided tid</td>
</tr>
<tr>
<td>or Ceftriaxone⁴</td>
<td>2 g once/d IV x 14-28d</td>
<td>50-100 mg/kg once/d IV</td>
</tr>
</tbody>
</table>

1. Regardless of the clinical manifestation of Lyme disease, complete response to treatment may be delayed beyond the treatment duration. Relapse has occurred with all of these regimens; patients with objective signs of relapse may need a second course of treatment.
2. Should not exceed adult dosage.
3. Should not be used for children less than eight years old or for pregnant or lactating women.
4. Or cefotaxime (Claforan) 2 g IV q8h x 14-28d for adults and 150-200 mg/kg/d in 3-4 doses for children.
5. A temporary pacemaker may be necessary. Oral treatment may be substituted for IV therapy after resolution of the heart block in a stable patient.
6. In late disease, the response to treatment may be delayed for several weeks or months.

azithromycin (Zithromax) have been less effective in controlled trials.¹¹ Patients in whom bacterial cellulitis cannot be excluded could be treated with cefuroxime axetil or amoxicillin/clavulanic acid (Augmentin), since these drugs are active against Lyme disease as well as Streptococcus pyogenes and most community-acquired strains of Staphylococcus aureus. Fluoroquinolones are ineffective against *B. burgdorferi*.

NEUROLOGIC DISEASE — For patients with facial nerve palsy alone, oral doxycycline or amoxicillin may be effective. Patients with other neurologic involvement, such as meningitis, other cranial nerve palsies, radiculopathy or cognitive deficits, should be treated with IV ceftriaxone (Rocephin) or cefotaxime (Claforan).¹²

CARDIAC DISEASE — Cardiac conduction abnormalities associated with Lyme disease are generally self-limited. Patients with minor cardiac involvement (first-degree atrioventricular block) can usually be treated with oral doxycycline or amoxicillin. Those with more severe cardiac involvement should receive IV ceftriaxone or cefotaxime.
ARTHRITIS — Oral therapy with doxycycline or amoxicillin for 28 days is usually effective for treatment of Lyme arthritis. Patients who have not responded to oral treatment may respond to a second one-month course of oral therapy or to IV therapy with ceftriaxone or cefotaxime. One trial found similar efficacy in eradicating signs and symptoms with 14 and 28 days of ceftriaxone in patients with late Lyme disease, the majority of whom had Lyme arthritis.13

POST-LYME DISEASE SYNDROME — Some treated patients whose objective manifestations of Lyme disease have resolved with antibiotic treatment report subjective symptoms such as fatigue, musculoskeletal pain or cognitive difficulties of varying intensity that may persist over prolonged periods. Microbiologic evaluation of these patients has failed to find evidence of either persistent *B. burgdorferi* infection or of co-infection with another tick-borne pathogen. Two controlled studies, one in 78 patients seropositive for IgG antibodies to *B. burgdorferi* and another in 51 seronegative patients, both with a history of treated Lyme disease and persistent symptoms for at least 6 months, compared 1 month of IV ceftriaxone plus 2 additional months of oral doxycycline with placebo and found no clinical benefit of antibiotic therapy.14

CONCLUSION — Use of repellents and avoidance and early removal of ticks are the first steps in prevention of Lyme disease. In highly endemic areas, when an engorged *Ixodes scapularis* tick is attached for at least 48 hours, prophylaxis with a single dose of doxycycline would be reasonable in adults and children at least 8 years old. With a less compelling indication, it would be reasonable not to prescribe antibiotics unless erythema migrans develops. Recommended doses of antibiotics cure almost all patients with erythema migrans without complications. Antibiotic therapy is not recommended for patients with a history of appropriately treated Lyme disease and persistent subjective symptoms.
Treatment of Lyme Disease

Antifungal Drugs

Original publication date – February 2005

The drugs of choice for treatment of some fungal infections are listed in the table that begins page 119. Some of the indications and dosages recommended here have not been approved by the FDA.

POLYENES: AMPHOTERICIN B

Amphotericin B products are the only polyenes currently available for systemic treatment of fungal infections. Nystatin, another polyene, is only available topically. A liposomal formulation of nystatin is in clinical development for treatment of systemic fungal infections including invasive aspergillosis (F Offner et al, Antimicrob Agents Chemother 2004; 48:4808).

Polyenes act by binding to ergosterol in the fungal cell membrane, leading to loss of membrane integrity and leakage of cell contents. Conventional amphotericin B and the newer lipid-based formulations have the same spectrum of activity and are active against most pathogenic fungi and some protozoa. Exceptions include Aspergillus terreus, Fusarium spp., Pseudallescheria boydii and some strains of Candida lusitaniae. Amphotericin is used for treatment of many fungal disorders including aspergillosis, blastomycosis, candidiasis, coccidioidomycosis, cryptococcosis (including meningitis), histoplasmosis, paracoccidioidomycosis, sporotrichosis and zygomycosis. It is also used as empiric therapy in febrile neutropenic patients.

Conventional amphotericin – Amphotericin B deoxycholate (Fungizone, and others), the old non-lipid formulation of amphotericin, is by far the least expensive, but the development of better tolerated lipid-based formulations has led to a decrease in its use.
Fungal Infections

Intravenous infusion of amphotericin B deoxycholate frequently causes fever and chills, and sometimes headache, nausea, vomiting, hypotension and tachypnea, usually beginning 1 to 3 hours after starting the infusion and lasting about 1 hour. The intensity of these infusion-related acute reactions tends to decrease after the first few doses. Pretreatment with acetaminophen (Tylenol, and others) or aspirin, diphenhydramine (Benadryl, and others) 25 mg IV and/or hydrocortisone 25 mg IV can decrease the severity of the reaction. Treatment with meperidine (Demerol, and others) 25-50 mg IV can shorten the duration of rigors.

Nephrotoxicity is the major dose-limiting toxicity of amphotericin B deoxycholate; sodium loading with normal saline may prevent or ameliorate it and is generally recommended for patients who can tolerate a fluid load. The nephrotoxicity of amphotericin B may add to the nephrotoxicity of other drugs including cyclosporine (Sandimmune, Neoral), tacrolimus (Prograf) and aminoglycoside antibiotics such as gentamicin (Garamycin, and others). Hypokalemia and hypomagnesemia are common and are usually due to a mild renal tubular acidosis. Weight loss, malaise, anemia, thrombocytopenia and mild leukopenia can occur. Cardiac toxicity and myopathy have been reported (PJ Danaher et al, J Antimicrob Chemother 2004; 53:115).

A small, non-blind study comparing a conventional 4-hour infusion with a 24-hour continuous infusion of amphotericin B deoxycholate found that infusion-related reactions and nephrotoxicity were less frequent and less severe with continuous infusions (U Eriksson et al, BMJ 2001; 322:579), but the comparative efficacy of the 24-hour infusion has not been established.
Treatment of Fungal Infections

<table>
<thead>
<tr>
<th>Infection</th>
<th>Drug of Choice</th>
<th>Dosage1</th>
<th>Duration2</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPERGILLOSIS</td>
<td>Amphotericin B or Voriconazole6</td>
<td>1-1.5 mg/kg/d IV³</td>
<td>≥10 wks</td>
<td>Itraconazole 200 mg IV bid x 2d; then 200 mg IV qd x 12d or 200 mg PO tid x 3d; either followed by 200 mg PO bid; Caspofungin 70 mg IV x 1d, then 50 mg IV once/d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 mg/kg IV q12h x 1d, then 4 mg/kg IV q12h, then 200 mg PO bid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLASTOMYCOSIS5</td>
<td>Itraconazole or Amphotericin B</td>
<td>200 mg PO bid</td>
<td>6-12 mos</td>
<td>Fluconazole 400-800 mg PO once/d</td>
</tr>
<tr>
<td>CANDIDIASIS</td>
<td>Oropharyngeal or Esophageal6,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluconazole7</td>
<td>200 mg IV or PO once, then 100 mg once/d</td>
<td>1-3 wks</td>
<td>Itraconazole8 200 mg PO once/d</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphotericin B</td>
<td>0.3-0.5 mg/kg/d³</td>
<td></td>
<td>Voriconazole9 200 mg PO bid</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caspofungin</td>
<td>50 mg IV once/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vulvovaginal6,7,10</td>
<td>Topical therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butoconazole, clotrimazole, miconazole, triconazole, or terconazole</td>
<td>once/d</td>
<td>1-7d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(available as intravaginal creams, ointments, tablets, ovals or suppositories)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systemic therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluconazole</td>
<td>150 mg PO once¹¹</td>
<td>1d</td>
<td>Itraconazole 200 mg PO bid x 1d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ketoconazole 200 mg PO bid x 5d</td>
</tr>
<tr>
<td></td>
<td>Candidemia7</td>
<td>400-800 mg IV once/d, followed by PO</td>
<td>2 wks after afebrile and blood cultures negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caspofungin13</td>
<td>70 mg IV x 1d, then 50 mg IV once/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphotericin B</td>
<td>0.5-1 mg/kg/d IV³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary14</td>
<td>Fluconazole</td>
<td>200 mg IV or PO once/d</td>
<td>7-14d</td>
<td>Fluconazole 25 mg/kg PO qd¹⁶</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphotericin B</td>
<td>0.3-0.5 mg/kg/d IV³</td>
<td>7-14d</td>
<td></td>
</tr>
</tbody>
</table>

1. Usual dosage. Some patients may need dosage adjustment for renal or hepatic dysfunction or when used with interacting drugs.
2. The optimal duration of treatment with these drugs is often unclear. Depending on the disease and its severity, they may be continued for weeks or months or, particularly in immunocompromised patients, indefinitely.
3. Dosage of amphotericin B deoxycholate. Usual doses of lipid-based formulations for treatment of invasive fungal infection are: amphotericin B lipid complex (Abelcet) 5 mg/kg/d; liposomal amphotericin B (AmBisome) 3-5 mg/kg/d; amphotericin B cholesteryl sulfate (Amphotec) 3-4 mg/kg/d. For treatment of aspergillosis, fusariosis and mucormycosis, the dosage of AmBisome is 5 mg/kg/d and doses up to 15 mg/kg/d have been used. For treatment of cryptococcal meningitis in HIV patients, the dosage of AmBisome is 6 mg/kg/d.
4. In one large controlled trial, voriconazole was more effective than amphotericin B for treatment of invasive aspergillosis (R Herbrecht et al, N Engl J Med 2002; 347:408).
5. Patients with severe illness or CNS involvement should receive amphotericin B.
6. For uncomplicated oropharyngeal thrush, clotrimazole troches (10 mg) 5x/d or nystatin suspension 500,000 units (5 mL) qid can also be used. Azole-resistant oropharyngeal or esophageal candidiasis usually responds to amphotericin B or caspofungin.
7. Candida albicans is generally highly susceptible to fluconazole. C. krusei infections are resistant to fluconazole. C. glabrata infections are often resistant to low doses, but may be susceptible to high doses of fluconazole. C. lusitaniae may be resistant to amphotericin B.
8. For patients with oropharyngeal disease, itraconazole oral solution 200 mg (20 mL) given once daily without food is more effective thanitraconazole capsules.
10. Non-albicans species, such as C. glabrata and C. krusei, respond to terbinafine 200 mg orally daily for 14 days or to topical fluconazole cream (Ed Sobel et al, Am J Obstet Gynecol 2003; 189:1297).
11. If patient remains asymptomatic.
12. Non-neutropenic patients only. In one large controlled trial, fluconazole plus amphotericin B was somewhat more effective than fluconazole alone for patients with candidemia (JH Rex et al, Clin Infect Dis 2003; 36:1221).
13. In a large controlled trial, caspofungin was at least as effective as amphotericin B for treatment of invasive candidiasis or candidemia (J Mora-Duarte et al, N Engl J Med 2002; 347:208).
Treatment of Fungal Infections

<table>
<thead>
<tr>
<th>Infection</th>
<th>Drug of Choice</th>
<th>Dosage1</th>
<th>Duration2</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>COCIDIOIDOMYCOSIS17</td>
<td>Itraconazole</td>
<td>200 mg PO bid</td>
<td>>1 yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>400-800 mg PO once/d</td>
<td>>1 yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>0.5-0.7 mg/kg/d IV2</td>
<td>>1 yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRYPTOCOCCOSIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphotericin B</td>
<td>0.5-1 mg/kg/d IV3</td>
<td>2 wks</td>
<td>Fluconazole 400-800 mg PO once/d19</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>100 mg/kg/d PO16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flucytosine</td>
<td>400 mg PO once/d</td>
<td>8 wks</td>
<td>Itraconazole 200 mg PO bid</td>
</tr>
<tr>
<td></td>
<td>followed by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flucytosine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>maintenance18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flucytosine</td>
<td>200 mg PO once/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FUSARIOsis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphotericin B</td>
<td>1-1.5 mg/kg/d IV qd3</td>
<td>6-10 wks</td>
<td>Posaconazole21 200 mg PO qid</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>6 mg/kg IV q12h x 1d,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voriconazole</td>
<td>then 4 mg/kg q12h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HISTOPLASMOSIS5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Itraconazole</td>
<td>200 mg PO bid</td>
<td>6-18 mos</td>
<td>Fluconazole 400-800 mg PO once/d19</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>0.5-1.0 mg/kg/d IV3</td>
<td>10-12 wks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphotericin B20</td>
<td></td>
<td></td>
<td>Amphotericin B 0.5-1 mg/kg IV wkly3</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>200 mg PO once/d or bid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MUCORMYCOSIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphotericin B</td>
<td>1-1.5 mg/kg/d IV3</td>
<td>6-10 wks</td>
<td>Posaconazole21 200 mg PO qid</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>250 mg PO once/d</td>
<td>12 wks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terbinafine</td>
<td>200 mg PO once/d</td>
<td>3 mos24</td>
<td>Fluconazole 150-300 mg PO once wkly x 6-12 mos24</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>200 mg PO bid x 1 wk/mo</td>
<td>3-4 mos24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ONYCHOMYCOSIS22, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Itraconazole</td>
<td>100-200 mg PO once/d</td>
<td>6-12 mos</td>
<td>Ketoconazole 200-400 mg PO once/d</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>6 mg/kg IV q12h x 1d,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voriconazole</td>
<td>then 4 mg/kg IV q12h,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>then 200 mg PO bid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSEUDALLESCHERIASIS (scedosporiosis)</td>
<td>6 mg/kg IV q12h x 1d,</td>
<td>2 wks</td>
<td>Itraconazole 200 mg IV bid x 2d,</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>then 4 mg/kg IV q12h,</td>
<td></td>
<td>then IV once/d or PO tid x 3d,</td>
</tr>
<tr>
<td></td>
<td>Posaconazole</td>
<td>then 200 mg PO bid</td>
<td></td>
<td>then PO bid</td>
</tr>
</tbody>
</table>

14. Asymptomatic candiduria usually does not require treatment. Patients who are symptomatic, neutropenic, have renal allografts or are undergoing urologic manipulation, and infants with low birth weight, should be treated (AP Pappas et al, Clin Infect Dis 2004; 38:161). 15. Bladder irrigation with amphotericin B has been used to treat candidal cystitis, but does not treat disease beyond the bladder. 16. Divided into 4 doses q6h. Dosage must be decreased in patients with diminished renal function. When given with amphotericin B, some Medical Letter consultants recommend beginning flucytosine at 75 mg/kg/day divided q6h, until the degree of amphotericin nephrotoxicity becomes clear or flucytosine blood levels can be determined. 17. Itraconazole is the drug of choice for non-meningeal coccidioidomycosis. Fluconazole is preferred for coccidioidal meningitis. Patients with meningitis who do not respond may require intrathecal amphotericin B. One patient with meningitis was successfully treated with voriconazole (KJ Cortez et al, Clin Infect Dis 2003; 36:1619). 18. Suppressive for patients with HIV infection. 19. For use only in patients who cannot tolerate itraconazole or amphotericin. 20. In one study, liposomal amphotericin B (AmBisome) was associated with greater improvement in survival compared to amphotericin B deoxycholate (PC Johnson et al, Ann Intern Med 2002; 137:105). 21. An investigational drug, posaconazole has been used after mucormycosis was clinically improved and oral alimentation was sufficient to enhance absorption (AM Tobon et al, Clin Infect Dis 2003; 36:1488). 22. Nail specimens should be obtained prior to any drug therapy to confirm the diagnosis of onychomycosis. 23. Topical treatment with ciclopirox 8% nail lacquer (Penlac) is indicated for treatment of mild-to-moderate onychomycosis caused by T. rubrum that does not involve the lunula. Ciclopirox is less effective than systemic therapy, but has no systemic side effects or drug interactions. 24. Duration for toenail infection: Duration of treatment for fingernail infection: 6 weeks with terbinafine, 2 months with itraconazole and 3-6 months with fluconazole. 25. Initial treatment of severely ill patients. To be followed by itraconazole.
Lipid Formulations – Three lipid formulations of amphotericin B are marketed in the US: amphotericin B lipid complex (ABLC, Abelcet), liposomal amphotericin B (L-AmB, AmBisome), and amphotericin B colloidal dispersion (ABCD, Amphotec). In clinical trials, these formulations have been at least as effective as amphotericin B deoxycholate (TJ Walsh et al, N Engl J Med 1999; 340:764; PC Johnson et al, Ann Intern Med 2002; 137:105).

Compared to conventional amphotericin B, acute infusion-related reactions are worse with Amphotec, less with Abelcet, and least with AmBisome. Nephrotoxicity is less common with lipid-based products and, when it occurs, less severe than with amphotericin B deoxycholate (JR Wingard et al, Clin Infect Dis 2000; 31:1155). Liver toxicity, which is generally not associated with amphotericin B deoxycholate, has been reported with the lipid formulations.

Cost comparisons of amphotericin formulations should take into account the fact that conventional amphotericin B deoxycholate may cause renal failure, which can increase the length of hospital stay, healthcare costs and mortality rates (DW Bates et al, Clin Infect Dis 2001; 32:686). The superior tolerability of the lipid-based products permits more patients to receive high doses and complete the recommended course of therapy.
Fungal Infections

AZOLES

Systemic azole antifungals currently available in the US include fluconazole (Diflucan, and others), itraconazole (Sporanox), voriconazole (Vfend) and ketoconazole (Nizoral, and others). All act by blocking the activity of 14-alpha-demethylase, leading to inhibition of ergosterol synthesis. They differ in their spectrum of activity, bioavailability, adverse effects and potential for drug interactions.

FLUCONAZOLE — Fluconazole is active against most Candida species other than C. krusei, which is intrinsically resistant, and many strains of C. glabrata, which are increasingly resistant. Fluconazole has good activity against Cryptococcus spp. but no clinically significant activity against most molds, including Aspergillus spp., Fusarium spp. and Zygomyces.

Fluconazole, which is available in both oral (tablets and suspension) and intravenous preparations, is approved by the FDA for treatment of cryptococcal meningitis, vaginal, oropharyngeal and esophageal candidiasis, and for prophylaxis against candidiasis in patients undergoing bone marrow transplantation. Although not FDA-approved, it is also

<table>
<thead>
<tr>
<th>Drug</th>
<th>Daily dosage</th>
<th>Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B deoxycholate generic (Abbott)</td>
<td>1-1.5 mg/kg IV</td>
<td>$23.28</td>
</tr>
<tr>
<td>Fungizone (Sandoz)</td>
<td></td>
<td>40.90</td>
</tr>
<tr>
<td>Amphotericin B lipid complex (ABLC)</td>
<td>5 mg/kg IV</td>
<td>920.00</td>
</tr>
<tr>
<td>Abelcet (Enzon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liposomal amphotericin B (L-AmB)</td>
<td>3-5 mg/kg IV</td>
<td>1318.80</td>
</tr>
<tr>
<td>Ambisome (Fujisawa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphotericin B colloidal dispersion (ABCD)</td>
<td>3-4 mg/kg IV</td>
<td>480.00</td>
</tr>
<tr>
<td>Amphotec (InterMune)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For one day's treatment of a 70-kg patient at the highest usual dosage, according to AWP listings in Red Book 2004. Cost may vary among institutions based on formulary contracts.
Fungal Infections

Widely used to treat systemic infections due to Candida, such as candidemia and peritonitis.

Adverse Effects – Fluconazole is generally well tolerated. Gastrointestinal distress and rash can occur. Stevens-Johnson syndrome, anaphylaxis and hepatic necrosis have been reported.

Interactions – Fluconazole is a weaker inhibitor of CYP3A4 than itraconazole or ketoconazole but may still increase serum concentrations of drugs metabolized by 3A4, such as cyclosporine, simvastatin (Zocor) and lovastatin (Mevacor, and others). Fluconazole is a strong inhibitor of CYP2C9 and can therefore increase serum concentrations of tacrolimus, phenytoin (Dilantin, and others), zidovudine (Retrovir), warfarin (Coumadin, and others) and other drugs metabolized by 2C9. Concomitant administration of rifampin (Rifadin, and others) can lower serum concentrations of fluconazole.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Daily dosage</th>
<th>Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZOLES (Parenteral)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluconazole – Diflucan (Pfizer)</td>
<td>200-400 mg IV once</td>
<td>$162.19</td>
</tr>
<tr>
<td>Itraconazole – Sporanox (Ortho Biotech)</td>
<td>200 mg IV once</td>
<td>203.44</td>
</tr>
<tr>
<td>Voriconazole – Vfend (Pfizer)</td>
<td>4 mg/kg IV q12h</td>
<td>315.18</td>
</tr>
<tr>
<td>ECHINOCANDIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caspofungin – Cancidas (Merck)</td>
<td>50 mg IV once</td>
<td>372.68</td>
</tr>
<tr>
<td>AZOLES (Oral)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluconazole – average generic</td>
<td>200-400 mg PO once</td>
<td>28.77</td>
</tr>
<tr>
<td>Diflucan (Pfizer)</td>
<td></td>
<td>30.74</td>
</tr>
<tr>
<td>Itraconazole – Sporanox (Janssen)</td>
<td>200 mg PO bid</td>
<td>39.60</td>
</tr>
<tr>
<td>Voriconazole – Vfend (Pfizer)</td>
<td>200 mg PO q12h</td>
<td>67.36</td>
</tr>
</tbody>
</table>

* For one day's treatment of a 70-kg patient at the highest usual dosage, according to AWP listings in Red Book 2004 and Update January 2005. Cost may vary among institutions based on formulary contracts.
ITRACONAZOLE — Itraconazole has a broader spectrum of activity than fluconazole. It is active against a wide variety of fungi including *Cryptococcus neoformans*, *Aspergillus* spp., *Blastomyces dermatitidis*, *Coccidioides immitis*, *Histoplasma capsulatum*, *Paracoccidioides brasiliensis*, *Pseudallescheria boydii*, *Sporothrix* spp., and dermatophytes. It also has good activity against most *Candida* spp., including some strains of fluconazole-resistant *C. glabrata*. Itraconazole has no clinically meaningful activity against *Fusarium* spp. or Zygomycetes. Itraconazole is not recommended for treatment of meningitis because it does not cross the blood-brain barrier.

Itraconazole is available orally in both capsules and solution and in an intravenous formulation. Absorption after oral dosing is variable; the solution is more bioavailable than the capsules and is generally preferred. The capsules should be taken with food, while the solution is absorbed best without food.

Itraconazole is FDA-approved for treatment of blastomycosis, histoplasmosis (non-meningeal) and aspergillosis in patients who are intolerant of or refractory to amphotericin B. It is also indicated for empiric therapy of febrile neutropenic patients with suspected fungal infections. The oral solution is approved for treatment of oropharyngeal and esophageal candidiasis and may have an additional benefit as a topical treatment of this disease. Itraconazole capsules are approved for treatment of fingernail and toenail onychomycosis due to dermatophytes.

Adverse Effects — The most common adverse effects of itraconazole are dose-related nausea and abdominal discomfort. Rash and serious hepatic toxicity can occur. The drug can cause hypokalemia, edema and hypertension. Congestive heart failure has been reported with itraconazole and the drug should not be used in patients with ventricular dysfunction. Thrombocytopenia and leukopenia have also been reported. The intra-
Fungal Infections

venous formulation contains cyclodextrin, which can accumulate in azotemic patients; its use is not recommended in patients with creatinine clearance <30 mL/min.

Interactions – The absorption of itraconazole capsules is reduced with concurrent use of drugs that decrease gastric acidity, such as antacids, H2-receptor blockers, proton pump inhibitors or didanosine (Videx).

Itraconazole is a potent inhibitor of the hepatic isozyme CYP3A4 and may increase serum concentrations of drugs that are metabolized by this enzyme. For this reason, itraconazole is contraindicated with the following drugs: cisapride (Propulsid), dofetilide (Tikosyn), ergot alkaloids, levomethadyl (Orlaam), lovastatin, oral midazolam (Versed, and others), pimozide (Orap), quinidine, simvastatin, and triazolam (Halcion, and others). Itraconazole is itself also a substrate of CYP3A4; its metabolism may be affected by both inducers of the enzyme, such as rifampin and carbamazepine (Tegretol, and others), and by other inhibitors.

When some protease inhibitors, such as ritonavir (Norvir), amprenavir (Agenerase) or indinavir (Crixivan) are taken with itraconazole, serum concentrations of both drugs may increase. Itraconazole can increase serum concentrations of digoxin (Lanoxin, and others). Possible decreased contraceptive effect has been reported in patients taking oral contraceptives with itraconazole. Otherazole antifungals have increased plasma concentrations of loratadine (Claritin), oral anticoagulants and oral hypoglycemics, suggesting that itraconazole should be used with caution in patients taking any of these drugs.

Voriconazole — Voriconazole has a spectrum of activity similar to itraconazole but appears to be more active against *Aspergillus* spp. and some species of *Candida*, including *C. glabrata* and *C. krusei* (The
Fungal Infections

Medical Letter 2002; 44:63). Unlike itraconazole, voriconazole is active against *Fusarium* spp. Zygomycetes, such as *Mucor* spp. and *Rhizomucor* spp., are generally resistant to voriconazole, and infection with these organisms has developed during treatment with the drug.

Voriconazole is FDA-approved for treatment of invasive aspergillosis and esophageal candidiasis, and for treatment of refractory infections caused by *Scedosporium apiospermum* and *Fusarium* spp. It is also indicated for treatment of candidemia in non-neutropenic patients and for disseminated *Candida* infections involving the skin, abdomen, bladder and kidney.

Adverse Effects – Transient visual disturbances, including blurred vision, photophobia and altered perception of color or image, are common with voriconazole. Rash, photosensitivity, increased transaminase activity and hallucinations have also occurred. In patients with creatinine clearance <50 mL/min the drug should be given orally if possible, instead of intravenously, because the solubilizing agent (sulfobutylether-b-cyclodextrin), not voriconazole itself, can accumulate. Patients with mild to moderate hepatic cirrhosis should receive a normal loading dose of voriconazole, but half of the maintenance dose.

Interactions – Voriconazole is metabolized in the liver by CYP2C19, CYP2C9 and CYP3A4. CYP2C19 is genetically variant (about 3% to 5% of Caucasians and African-Americans and about 15% of Asians do not express it) and patients deficient in this enzyme may be exposed to higher concentrations of the drug. Voriconazole is contraindicated in patients taking rifampin, rifabutin, ergot alkaloids, long-acting barbiturates, carbamazepine, pimozide, quinidine, efavirenz (*Sustiva*), ritonavir (400 mg q12h) or sirolimus (*Rapamune*). Clinical monitoring or dose adjustment is required in patients taking warfarin (*Coumadin*, and others), sulfonylureas, statins, benzodiazepines, vinca alkaloids, nevirapine...
(Viramune) and HIV protease inhibitors other than indinavir. Omeprazole (Prilosec, and others), cyclosporine and tacrolimus require dose reductions when given with voriconazole. Patients taking phenytoin require increased doses of voriconazole and more frequent monitoring for phenytoin toxicity.

KETOCONAZOLE — Ketoconazole is now seldom used. The other azoles have fewer adverse effects and are generally preferred. Ketoconazole remains an option for treatment of infections with dimorphic fungi (histoplasmosis, blastomycosis or coccidioidomycosis), but, as with itraconazole, is not recommended for treatment of meningitis due to these organisms because it does not cross the blood-brain barrier. Ketoconazole is also FDA-approved for treatment of paracoccidioidomycosis, candidiasis and severe cutaneous dermatophyte infections that do not respond to topical therapy.

Adverse Effects — Anorexia, nausea and vomiting are common with higher doses (>400 mg/day) of ketoconazole; taking the drug with food or at bedtime may improve tolerance. Pruritus, rash and dizziness may occur. Ketoconazole can decrease plasma testosterone concentrations and cause gynecomastia, decreased libido and loss of potency in men and menstrual irregularities in women. High doses may inhibit adrenal steroidogenesis and decrease plasma cortisol concentrations. Mild hepatic toxicity is fairly common with ketoconazole. If jaundice or symptoms of hepatitis appear, the drug should be stopped promptly or fatal hepatic necrosis may occur.

Interactions — Drug interactions with ketoconazole are similar to those with itraconazole.

POSACONAZOLE — Posaconazole (SCH 56592), an unapproved azole available from the manufacturer for compassionate use, is
under review by the FDA for oral treatment of invasive fungal infections, including aspergillosis, fusariosis, and zygomycosis in patients who are intolerant of or refractory to other therapy. Posaconazole appears to have similar activity to fluconazole and itraconazole against *Candida* spp. but is more active against Zygomycetes (*Mucor* spp. and *Rhizomucor* spp.). Currently, amphotericin B is the only drug available to treat *Mucor*.

ECHINOCANDINS

Echinocandins inhibit synthesis of β (1,3)-D-glucan, an essential component of the fungal cell wall. The potential for adverse effects in humans is low due to the absence of this substance in mammalian cells. The only echinocandin currently on the market is caspofungin (*Cancidas*).

CASPOFUNGIN — Caspofungin is available only for intravenous administration and is FDA-approved for treatment of esophageal candidiasis, candidemia, and intra-abdominal abscesses, peritonitis, and pleural space infections due to *Candida*. It is also indicated for empirical treatment of presumed fungal infections in febrile, neutropenic patients and treatment of invasive aspergillosis in patients who are refractory to or intolerant of other therapies. Caspofungin is active against *Candida* spp. and *Aspergillus* spp., but not *Cryptococcus neoformans*.

Adverse Effects — Although generally well tolerated, caspofungin occasionally causes rash, fever and mild hepatic toxicity (Medical Letter 2001; 43:58). Anaphylaxis has occurred. Dosage should be reduced in patients with moderate hepatic dysfunction. Liver function tests should be monitored in patients taking cyclosporine with caspofungin.
Interactions – Rifampin, carbamazepine, dexamethasone, efavirenz, nevirapine and phenytoin may increase the clearance of caspofungin. An increase in caspofungin dosage to 70 mg should be considered when co-administered with these drugs.

MICAFUNGIN (Mycamine) — Micafungin is an echinocandin indicated for treatment of esophageal candidiasis and prophylaxis of invasive Candida infections in patients undergoing hematopoietic stem cell transplantation (HSCT). [Since this article was published, The Medical Letter has reviewed micafungin (Mycamine). See page 133.]

OTHER DRUGS

FLUCYTOSINE (Ancobon) – Potentially lethal, dose-related bone marrow toxicity, colitis and rapid development of resistance when used alone limit the use of flucytosine. Keeping serum concentrations below 100 mcg/mL (some clinicians recommend staying below 50 mcg/mL) decreases toxicity, but delays in obtaining assay results often limit their utility.

TERBINAFINE (Lamisil) – Terbinafine is a synthetic allylamine approved by the FDA for treatment of onychomycosis of the toenail or fingernail due to dermatophytes. It likely acts by inhibiting squalene epoxidase and blocking ergosterol synthesis. The most commonly reported adverse effects of oral terbinafine have been headache, gastrointestinal symptoms including diarrhea, dyspepsia and abdominal pain, and occasionally a taste disturbance that may persist for weeks after the drug is stopped. Rash, pruritus and urticaria, usually mild and transient, have occurred. Toxic epidermal necrolysis and erythema multiforme have been reported. Increased aminotransferase activity and serious hepatic injury have occurred. Liver function should be assessed before initiation and occasionally during treatment with terbinafine. Anaphylaxis, pancytopenia and severe neutropenia have also been reported.
Fungal Infections

Interactions – Terbinafine is an inhibitor of CYP2D6 and may increase the effect or toxicity of drugs metabolized by this enzyme, including tricyclic antidepressants. Cimetidine (*Tagamet*, and others) may reduce the clearance of terbinafine. Enzyme inducers such as rifampin may enhance terbinafine clearance.

SPECIAL CIRCUMSTANCES

Pregnancy – Amphotericin B is the preferred treatment for deep fungal infections during pregnancy. Fluconazole is teratogenic in animals and a similar pattern of craniofacial and cardiac anomalies has been reported in a few infants exposed to high doses of the drug during pregnancy. In rats, itraconazole, ketoconazole and voriconazole are teratogenic, and caspofungin is embryotoxic. None of these drugs should be used in pregnancy unless there is a strong clinical indication for which no suitable alternative is available.

Prophylaxis – High-risk neutropenic patients, such as those undergoing allogeneic and certain autologous stem cell transplants, and those with hematologic malignancy who are expected to have prolonged profound neutropenia, may require prophylactic treatment with antifungal drugs (CA Diekewicz, Clin Infect Dis 2001; 33:139). The drug of choice for these patients is fluconazole 400 mg PO or IV once daily (JH Rex et al, Clin Infect Dis 2000; 30:662). Itraconazole solution, 200 mg PO or IV once daily, is an alternative but may not be well tolerated (KA Marr et al, Blood 2004; 103:1527). Micafungin has also been effective in this population (JH van Burik et al, Clin Infect Dis 2004; 39:1407).

HIV-infected patients with frequent or severe recurrences of oral or esophageal candidiasis may also require prophylaxis. For these patients the regimen of choice is fluconazole 100-200 mg PO once
daily. Itraconazole solution 200 mg PO once daily is an alternative (H Masur et al, Ann Intern Med 2002; 137:435).

Recurrent vaginal candidiasis in any population can often be controlled by maintenance therapy with fluconazole 150 mg PO once weekly (JD Sobel et al, N Engl J Med 2004; 351:876).

Fever and Neutropenia – For neutropenic patients with fever that persists despite treatment with antibacterial drugs, empiric addition of an antifungal drug is common practice (JR Wingard, Clin Infect Dis 2004; 39 suppl 1:S38). Amphotericin B has been used for this indication; the liposomal formulations are better tolerated, but much more expensive. Caspofungin was not inferior to liposomal amphotericin B (*AmBisome*) in a randomized comparative trial (TJ Walsh et al, N Engl J Med 2004; 351:1391). In another randomized trial, voriconazole appeared to be about as effective as liposomal amphotericin B (TJ Walsh et al, N Engl J Med 2002; 346:225). Fluconazole and itraconazole have also been used as alternatives to amphotericin B for this indication (DJ Winston et al, Am J Med 2000; 108:282; M Boogaerts et al, Ann Intern Med 2001; 135:412).

Combination therapy – Use of combination therapy for treatment of immunosuppressed patients with invasive aspergillosis (IA), which has a high morbidity and mortality despite current treatments, is controversial. Theoretically, combining two drugs with different mechanisms of action might be more effective than either one alone.

Amphotericin B and azoles both act on ergosterol, but in different ways. *In vitro* and animal data indicate that if anazole is started before a polyene, they antagonize each other (MD Johnson et al, Antimicrob Agents Chemother 2004; 48:693). If they are given simultaneously, however, antagonism may not occur. A clinical trial in patients with candidemia
Fungal Infections

showed that patients who received high-dose fluconazole in combination with 5-6 days of amphotericin B were more likely to clear the infection from the blood than those who received high-dose fluconazole alone (JH Rex et al, Clin Infect Dis 2003; 36:1221).

In vitro studies and animal data suggest a potential benefit of combining an echinocandin with either an azole or amphotericin B, but clinical studies are lacking. One small observational study in patients with refractory invasive aspergillosis showed that a combination of voriconazole and caspofungin was associated with a lower mortality than voriconazole alone (KA Marr et al, Clin Infect Dis 2004; 39:797). The comparative efficacy of this combination in previously untreated invasive aspergillosis is unknown (MD Johnson et al, Antimicrob Agents Chemother 2004; 48:693).
Micafungin (Mycamine) for Fungal Infections

Originally published in The Medical Letter — June 2005; 47:51

Micafungin sodium (Mycamine – Astellas), the second echinocandin antifungal\(^1\) to become available in the US, has been approved by the FDA for intravenous treatment of esophageal candidiasis and prophylaxis of invasive *Candida* infections in patients undergoing hematopoietic stem cell transplantation (HSCT).

MECHANISM OF ACTION — Echinocandins block the biosynthesis of (1,3)-\(\beta\)-D-glucan, a polysaccharide component of the cell wall in many pathogenic fungi.\(^2\)

PHARMACOLOGY

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Echinocandin antifungal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of action</td>
<td>Blocks cell wall synthesis</td>
</tr>
<tr>
<td>Formulation</td>
<td>50-mg, single-use vials</td>
</tr>
<tr>
<td>Route</td>
<td>Intravenous</td>
</tr>
<tr>
<td>Elimination half-life</td>
<td>11-17 hours</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Predominantly hepatic by non-CYP450 pathways</td>
</tr>
<tr>
<td>Elimination</td>
<td>Fecal</td>
</tr>
</tbody>
</table>

IN VITRO ACTIVITY — Standardized susceptibility testing methods for echinocandins have not been established, and results of *in vitro* susceptibility tests do not necessarily correlate with *in vivo* or clinical outcomes. Micafungin is active *in vitro* against most isolates of *Candida* spp. and *Aspergillus* spp. It has good activity against fluconazole-resistant *Candida albicans* and against non-*albicans* *Candida* spp. inherently resistant to fluconazole, such as strains of *C. glabrata* or *C. krusei*, all of which are increasing, particularly in immunocompromised patients. Micafungin is also active against *Pneumocystis jiroveci* (formerly *carinii*).\(^3,4\)
Micafungin (Mycamine) for Fungal Infections

CLINICAL STUDIES — Treatment of esophageal candidiasis – A randomized dose-response study compared 14 to 21 days treatment with micafungin 50, 100, or 150 mg IV once daily with fluconazole (Diflucan, and others) 200 mg IV daily in 245 HIV-positive patients with endoscopically- and culture-proven esophageal candidiasis. Endoscopic cure rates with micafungin were 68.8% (50 mg), 77.4% (100 mg) and 89.8% (150 mg), compared to a cure rate of 86.7% with fluconazole.5

A second clinical trial randomized 523 patients with endoscopically proven candidiasis to either micafungin 150 mg/day IV or fluconazole 200 mg/day IV. After a median of 14 days, micafungin was comparable to fluconazole in endoscopic (87.7% vs. 88%) and clinical (94.2% vs. 94.6%) cure.6

Fungal Prophylaxis in HSCT – A prospective randomized double-blind trial in 882 adults and children compared prophylaxis with micafungin 50 mg IV once daily (1 mg/kg for patients weighing <50 kg) to fluconazole 400 mg IV once daily (8 mg/kg for patients weighing <50 kg) during the neutropenic phase of HSCT. The treatment success rate for patients receiving micafungin was 80.0% compared to 73.5% with fluconazole, a statistically significant difference, but most patients who failed treatment had received empiric therapy for a suspected, not a confirmed, fungal infection.7

Other – A small, open-label study of micafungin to treat deep-seated mycoses found overall clinical response rates of 57% in aspergillosis and 71% in esophageal candidiasis; rates were similar in patients with and without prior treatment.8 No randomized controlled trials are available comparing micafungin with standard antifungals in the treatment of deep-seated candidiasis, candidemia, or invasive aspergillosis, or with caspofungin for any indication.

ADVERSE EFFECTS — Micafungin is generally well tolerated. Adverse events have included fever, headache, nausea, vomiting, diar-
Micafungin (Mycamine) for Fungal Infections

rhea, leukopenia, hepatic enzyme abnormalities, and phlebitis at the injection site. Possible histamine-mediated symptoms such as rash, pruritus, facial swelling and vasodilatation have also occurred. Isolated cases of anaphylaxis and hemolysis have been reported.

DRUG INTERACTIONS — Micafungin is not metabolized by the CYP450 system and is not a P-glycoprotein substrate or inhibitor. In the presence of steady-state micafungin, serum concentrations (AUC) of sirolimus (Rapamycin) and nifedipine (Adalat, Procardia, and others) were increased by 21% and 18%, respectively. Micafungin does not interact with tacrolimus (Prograf), cyclosporine (Sandimmune, and others) or mycophenolate mofetil (Cellcept).

The other echinocandin, caspofungin, decreases serum levels of tacrolimus by about 20-25% when the two are given together. Co-administration of caspofungin with cyclosporine increases caspofungin plasma concentrations by 35% and can cause transient liver abnormalities, but 2 small studies in a total of 54 patients who took both drugs for two weeks did not find serious adverse effects or significant transaminitis.

DOSAGE AND COST — The recommended dosage of micafungin is 50 mg/day for prophylaxis and 150 mg/day for treatment, both given IV as a single dose over 1 hour.

CHOICE OF DRUGS — Oral fluconazole remains the drug of choice for initial treatment of Candida esophagitis. Micafungin (Mycamine) could be used as an alternative for patients needing intravenous treatment and those with fluconazole-resistant strains. Caspofungin and amphotericin B could also be used for such patients. For HSCT prophylaxis, fluconazole remains the drug of choice. The utility of micafungin alone or in combination with other antifungal drugs to treat aspergillosis remains to be established. Drug-drug interactions may be less of a problem with micafungin than with caspofungin, but comparative trials are lacking.
Micafungin (*Mycamine*) for Fungal Infections

DRUGS FOR TREATMENT OF ESOPHAGEAL CANDIDIASIS

<table>
<thead>
<tr>
<th>DRUG</th>
<th>DOSAGE</th>
<th>COST†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluconazole</td>
<td>200 mg once, then 100 mg once/d</td>
<td>$167.18</td>
</tr>
<tr>
<td>Diflucan (Pfizer)</td>
<td></td>
<td>$210.41</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>200 mg once/d</td>
<td>382.20</td>
</tr>
<tr>
<td>Sporanox (Janssen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voriconazole</td>
<td>200 mg bid (100 mg bid if <40 kg)</td>
<td>1461.60</td>
</tr>
<tr>
<td>Vfend (Pfizer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intravenous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphotericin B deoxycholate</td>
<td>0.3-0.5 mg/kg/d</td>
<td>16.43</td>
</tr>
<tr>
<td>Liposomal amphotericin B (L-AmB)</td>
<td>3-5 mg/kg/d</td>
<td>28,848.75</td>
</tr>
<tr>
<td>Amphotericin B lipid complex (ABLC)</td>
<td>5 mg/kg/d</td>
<td>18,614.40</td>
</tr>
<tr>
<td>Amphotericin B colloidal dispersion (ABCD)</td>
<td>3-4 mg/kg/d</td>
<td>10,527.93</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>50 mg once/d</td>
<td>8485.26</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>200 mg once, then 100 mg once/d</td>
<td>935.00</td>
</tr>
<tr>
<td>Diflucan (Pfizer)</td>
<td></td>
<td>1089.00</td>
</tr>
<tr>
<td>Micafungin</td>
<td>150 mg once/d</td>
<td>5890.50†</td>
</tr>
<tr>
<td>Mycamine (Astellas)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voriconazole</td>
<td>3 mg/kg bid</td>
<td>3783.78</td>
</tr>
<tr>
<td>Vfend (Pfizer)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. For 21 days’ treatment of a 70-kg patient at the highest dosage, according to the most recent data (April 30, 2005) from retail pharmacies nationwide available from NDC Health, a healthcare information services company. Cost may vary among institutions based on formulary contracts.
2. Only the PO solution is FDA-approved for this indication.
3. Wholesale acquisition cost, according to the manufacturer. Actual retail cost will be higher.
4. IV administration is not FDA-approved for this indication.

Micafungin (*Mycamine*) for Fungal Infections

HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART) — The treatment of HIV infection requires combination therapy known as highly active antiretroviral therapy (HAART) along with interval monitoring of the patient’s HIV RNA levels (“viral load”) and CD4 cell count. Increases in viral load or decreases in CD4 count may indicate development of drug resistance and the need for susceptibility testing and a change in treatment regimen. The dosage and cost of drugs for HIV infection are listed in the table on pages 141 and 143. The regimens of choice are listed on page 146. [Since this article was published, The Medical Letter has reviewed two once-daily fixed dose NRTI combinations—abacavir/lamivudine (Epzicom) and emtricitabine/tenofovir (Truvada). See page 155.]

NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS (NRTIs) — Nucleoside analogs inhibit HIV reverse transcriptase and decrease or prevent HIV replication in infected cells. All NRTIs except didanosine are taken without regard to meals and generally do not interact with other drugs.

Class adverse effects — All NRTIs can all cause a potentially fatal syndrome of lactic acidosis with hepatic steatosis, probably due to mitochondrial toxicity (HCF Côté et al, N Engl J Med 2002; 346:811); they have also been associated with fat redistribution and hyperlipidemia.
Abacavir (ABC, Ziagen) – Abacavir is available alone or in a fixed-dose combination with lamivudine (Eptizom) or with lamivudine and zidovudine (Trizivir). Although generally recommended for twice-daily use, some clinical data indicate that abacavir could be given once daily (B Gazzard et al, Intersci Conf Antimicrob Agents Chemother [ICAAC] 2003; abstract H-1722b). In one study, the combination of abacavir/lamivudine/efavirenz was as effective as zidovudine/lamivudine/efavirenz for initial anti-HIV therapy (E Dejesus et al, Intersci Conf Antimicrob Agents Chemother [ICAAC] 2003; abstract H-446). Abacavir should not be used in a three-drug combination with lamivudine and tenofovir because of high rates of virologic failure (JE Gallant et al, Intersci Conf Antimicrob Agents Chemother [ICAAC] 2003; abstract H-1722a). Treatment with Trizivir alone has been associated with higher rates of virologic failure regardless of baseline viral load compared to Trizivir/efavirenz and lamivudine/zidovudine/efavirenz (RM Gulick et al, Antivir Ther 2003, 8 suppl 1:S194, abstract 41). HIV strains resistant to zidovudine, lamivudine, stavudine, didanosine, and tenofovir may also be resistant to abacavir. Patients with extensive prior NRTI therapy are less likely to respond to abacavir.

Adverse effects – In 3-9% of patients, a severe hypersensitivity reaction, usually with fever and sometimes with respiratory or gastrointestinal symptoms, malaise and rash, develops early in treatment (median of 11 days), but can occur at any time and may be fatal. Patients who experience a hypersensitivity reaction should not be rechallenged. It is controversial whether hypersensitivity reactions can occur when restarting abacavir after a hiatus in patients who previously tolerated the drug (PHJ Frissen et al, AIDS 2001; 15:289; AE Loeliger et al, AIDS 2001; 15:1325; J Berenguer et al, AIDS 2002; 16:1299). When rash occurs without the systemic symptoms associated with hypersensitivity, the drug can sometimes be continued (PG Clay et al, Ann Pharmacother 2000; 34:247).
Drugs for HIV Infection

Didanosine (ddl, Videx) – Didanosine is available as buffered tablets, buffered or non-buffered powder, and non-buffered enteric-coated capsules (*Videx EC*).

Adverse effects – Treatment-limiting toxicities of didanosine have been dose-related peripheral neuropathy, pancreatitis and gastrointestinal disturbances. The risk of pancreatitis, neuropathy and lactic acidosis is increased when didanosine is combined with stavudine or tenofovir; the combination of didanosine and stavudine is no longer recommended for initial treatment or treatment of pregnant women. The combination of didanosine and zalcitabine is not recommended because of overlapping toxicities.

Didanosine buffered tablets can interfere with absorption of drugs that require gastric acidity, including dapsone, ketoconazole, ciprofloxacin, delavirdine, indinavir, nelfinavir, atazanavir and others; they should be taken at least 1 to 2 hours apart. Use of the enteric-coated preparation should eliminate these drug interactions. Didanosine buffered tablets must be chewed or crushed into water. Gastrointestinal tolerance may be improved by using either *Videx EC* or the buffered powder formulation, or by preparing the pediatric powder in water with a liquid antacid (final concentration 10 mg/ml). The dose of *Videx EC* should be decreased to 250 mg/d when combined with tenofovir since didanosine levels are increased.

Emtricitabine (FTC, Emtriva) – Emtricitabine (Medical Letter 2003; 45:89) is the 5-fluorinated derivative of lamivudine. It has similar safety and efficacy, and can be given once daily. It is available alone or in a fixed dose combination with tenofovir (Truvada). Resistance to emtricitabine is conferred by the M184V mutation, which is the main cause of resistance to lamivudine, so cross-resistance is expected.

An unpublished randomized controlled trial in 571 treatment-naïve patients, summarized in the package insert, compared emtricitabine to
Drugs for HIV Infection

<table>
<thead>
<tr>
<th>Drug</th>
<th>Usual adult dosage</th>
<th>Total tablets or capsules/day</th>
<th>Cost 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS (NRTIs)†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abacavir (ABC)</td>
<td>300 mg bid 2</td>
<td>2</td>
<td>$13.46</td>
</tr>
<tr>
<td>Didanosine (ddl)</td>
<td>200 mg bid 3</td>
<td>2</td>
<td>9.14</td>
</tr>
<tr>
<td>Videx - Bristol-Myers Squibb*</td>
<td>400 mg once/day 3</td>
<td>1</td>
<td>10.22</td>
</tr>
<tr>
<td>Emtricitabine (FTC)</td>
<td>200 mg once/day 4</td>
<td>1</td>
<td>9.65</td>
</tr>
<tr>
<td>Emtriva - Gilead</td>
<td>150 mg bid 5 or 300 mg once/day 5</td>
<td>2</td>
<td>10.04</td>
</tr>
<tr>
<td>Lamivudine (3TC)</td>
<td>40 mg bid 6</td>
<td>2</td>
<td>11.38</td>
</tr>
<tr>
<td>Stavudine (d4T)</td>
<td>0.75 mg tid 7</td>
<td>3</td>
<td>8.10</td>
</tr>
<tr>
<td>Zalcitabine (ddC)</td>
<td>200 mg tid 8 or 300 mg bid 8</td>
<td>6</td>
<td>11.64</td>
</tr>
<tr>
<td>Zidovudine (AZT, ZDV)</td>
<td>1 tablet bid 9</td>
<td>2</td>
<td>21.84</td>
</tr>
<tr>
<td>Zidovudine/lamivudine</td>
<td>1 tablet bid 10</td>
<td>2</td>
<td>35.24</td>
</tr>
<tr>
<td>NUCLEOTIDE REVERSE TRANSCRIPTASE INHIBITOR††</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenofovir (TDF)</td>
<td>300 mg once/day 11</td>
<td>1</td>
<td>14.52</td>
</tr>
</tbody>
</table>

* Available in a liquid or oral powder formulation.
† Since this table was published, Epzicom (a combination of abacavir/lamivudine) and Truvada (a combination of emtricitabine/tenofovir) has been approved. See page 155.
†† Tipranavir (Aptivus) was recently FDA-approved. The Medical Letter has not yet reviewed this drug.

1. Daily cost according to data from retail pharmacies nationwide provided by NDCHealth, a health care information services company, October 2003.
2. Available in 300-mg tablets. Some clinical data indicate that abacavir can be given as 600 mg once daily.
3. Dosage with tablets (25-, 50-, 100-, 150- and 200-mg sizes): for patients <60 kg, 125 mg PO bid or 250 mg once daily; ≥60 kg, 200 mg PO bid or 400 mg once daily. Dosage with capsules (Videx EC) (125-, 200-, 250- and 400-mg sizes): for patients <60 kg, 200 mg PO bid or 400 mg once daily. Dosage with powder (Videx EC) (125-, 200-, 250- and 400-mg sizes): for patients <60 kg, 200 mg PO bid or 400 mg once daily. Dosage with powder (100-, 167- and 250-mg packets): varies from 167 mg (<60 kg) to 250 mg (≥60 kg) bid. Doses should be taken at least 30 minutes before meals or at least 2 hours afterward.
4. With or without food. Available in 200-mg capsules.
5. Available in 300-mg tablets. Some clinical data indicate that abacavir can be given as 600 mg once daily.
6. Dosage with tablets (25-, 50-, 100-, 150- and 200-mg sizes): for patients <60 kg, 125 mg PO bid or 250 mg once daily; ≥60 kg, 200 mg PO bid or 400 mg once daily. Dosage with capsules (Videx EC) (125-, 200-, 250- and 400-mg sizes): for patients <60 kg, 200 mg PO bid or 400 mg once daily. Dosage with powder (Videx EC) (125-, 200-, 250- and 400-mg sizes): for patients <60 kg, 200 mg PO bid or 400 mg once daily. Dosage with powder (100-, 167- and 250-mg packets): varies from 167 mg (<60 kg) to 250 mg (≥60 kg) bid. Doses should be taken at least 30 minutes before meals or at least 2 hours afterward.
7. Available in 0.375-mg and 0.75-mg tablets.
8. Available in 100-mg capsules and 300-mg tablets.
9. Each tablet contains 300 mg of zidovudine and 150 mg of lamivudine.
10. Each tablet contains 300 mg of zidovudine, 150 mg of lamivudine and 300 mg of abacavir.
11. May be taken with or without a meal. Available in 300-mg tablets.

Drugs for HIV Infection

stavudine, each taken in addition to didanosine and efavirenz. At 48 weeks, 81% of the emtricitabine group had achieved and maintained viral suppression compared to 68% in the stavudine group. In a double-blind trial, emtricitabine was as effective as lamivudine in 468 treatment-naïve patients. An open-label trial found that of 440 treatment-experienced patients maintained on lamivudine, those who switched to emtricitabine had slightly lower rates of viral suppression than those who continued taking lamivudine (77% vs. 82%) (I Sanne et al, Int Conf AIDS 2002; July 7-12; 14:abstract TuPeB4432).
Emtricitabine can cause hyperpigmentation of the palms and soles, particularly in dark-skinned patients. Because emtricitabine is also active against hepatitis B virus (HBV), HIV-positive patients with chronic HBV infection may experience a flare of hepatitis if emtricitabine is withdrawn or if their HBV strain becomes resistant to the drug.

Lamivudine (3TC, Epivir) – Lamivudine is probably the best tolerated of the NRTIs and can be taken once or twice daily. An increase in viral load during treatment with a lamivudine-containing regimen is often an indication of resistance to lamivudine (DV Havlir et al, JAMA 2000; 283:229). Lamivudine-resistant strains may be cross-resistant to zalcitabine and emtricitabine, and may have low-level resistance to abacavir, ddI and ddC.

Adverse effects – Because lamivudine is also active against hepatitis B virus (HBV), HIV-positive patients with chronic HBV infection may experience a flare of hepatitis if lamivudine is withdrawn or if their HBV strain becomes resistant to the drug. Other adverse effects are uncommon; pancreatitis has been reported rarely in children.

Stavudine (d4T, Zerit) – Stavudine can be given either in initial combination therapy or after failure of regimens containing other NRTIs. Cross-resistance with zidovudine is frequent, however.

Adverse effects – Fatal lactic acidosis may occur more frequently with stavudine than with other NRTIs. Serum aminotransferase activity may increase with stavudine treatment, and pancreatitis has occurred rarely. Stavudine commonly causes dose-related peripheral sensory neuropathy, which often disappears when the drug is stopped and may not recur when it is restarted at a lower dose. Stavudine is associated with risk of lipoatrophy and increased serum lipids, and has been associated with the development of diabetes (AM Brambilla, AIDS 2003; 17:1993). Lactic acidosis and pancreatitis are more common when
Drugs for HIV Infection

<table>
<thead>
<tr>
<th>Drug</th>
<th>Usual adult dosage</th>
<th>Total tablets or capsules/day</th>
<th>Cost1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON-NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS (NNRTIs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delavirdine (DLV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rescriptor - Agouron</td>
<td>400 mg tid12</td>
<td>6</td>
<td>$10.02</td>
</tr>
<tr>
<td>Efavirenz (EFV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustiva - Bristol-Myers Squibb</td>
<td>600 mg once/d13</td>
<td>1</td>
<td>14.72</td>
</tr>
<tr>
<td>Nevirapine (NVP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viramune - Boehringer Ingelheim*</td>
<td>200 mg bid14</td>
<td>2</td>
<td>12.76</td>
</tr>
<tr>
<td>PROTEASE INHIBITORS††</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amprenavir (APV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agenerase - GlaxoSmithKline*</td>
<td>1200 mg bid15</td>
<td>16</td>
<td>23.20</td>
</tr>
<tr>
<td>Atazanavir (ATV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reyataz - Bristol-Myers Squibb</td>
<td>400 mg once/d16</td>
<td>2</td>
<td>26.26</td>
</tr>
<tr>
<td>Fosamprenavir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lexiva - GlaxoSmithKline</td>
<td>1400 mg bid17</td>
<td>4</td>
<td>20.00</td>
</tr>
<tr>
<td>Indinavir (IDV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crixivan - Merck</td>
<td>800 mg tid18</td>
<td>6</td>
<td>17.46</td>
</tr>
<tr>
<td>Lopinavir/ritonavir (LPV/RTV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaletra - Abbott*</td>
<td>400/100 mg bid19</td>
<td>6</td>
<td>22.32</td>
</tr>
<tr>
<td>Nelfinavir (NFV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viracept - Agouron*</td>
<td>750 mg tid20 or</td>
<td>9</td>
<td>21.69</td>
</tr>
<tr>
<td>1250 mg bid20</td>
<td>(250-mg tablets) or 4 (625-mg tablets)</td>
<td>24.10</td>
<td>24.21</td>
</tr>
<tr>
<td>Ritonavir (RTV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norvir - Abbott*</td>
<td>100 mg bid-</td>
<td>2</td>
<td>4.08</td>
</tr>
<tr>
<td>400 mg bid21</td>
<td></td>
<td>8</td>
<td>16.32</td>
</tr>
<tr>
<td>Saquinavir hard gel cap (SQV hgc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invirase - Roche</td>
<td>400 mg bid22 or</td>
<td>4</td>
<td>9.48</td>
</tr>
<tr>
<td>1000 mg bid22</td>
<td></td>
<td>10</td>
<td>23.70</td>
</tr>
<tr>
<td>Saquinavir soft gel cap (SQV sgc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortovase - Roche</td>
<td>1200 mg tid23</td>
<td>18</td>
<td>23.70</td>
</tr>
<tr>
<td>FUSION INHIBITOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfuvirtide (T20)</td>
<td>90 mg SC bid24</td>
<td>---</td>
<td>66.51</td>
</tr>
</tbody>
</table>

12. Available in 100-mg and 200-mg tablets.
13. At bedtime for at least the first 2 to 4 weeks; may be taken with or without food, but not with a fatty meal. Marketed in 50-, 100-, 200- and 600-mg capsules.
14. 200 mg once/day for the first 2 weeks of treatment to decrease the risk of rash. Available in 200-mg tablets.
15. With or without food, but not with a fatty meal. Available in 50- and 150-mg capsules. Also FDA-approved for administration with ritonavir: 1200 mg APV/200 mg RTV once/day or 600 mg APV/100 mg RTV bid.
16. With food. Available in 100-, 150- and 200-mg capsules. When taken with efavirenz or TDF, the recommended dose is 300 mg ATV/100 mg RTV.
17. With or without food. Can also be given as 1400 mg once/day plus ritonavir 200 mg once/day or 700 mg bid plus ritonavir 100 mg bid in treatment-naive patients and 700 mg bid plus ritonavir 100 mg bid in PI-experienced patients. When taken with efavirenz, the recommended dosage of fosamprenavir plus ritonavir once/day is 1400 mg fosamprenavir/300 mg RTV.
18. With water or other liquids, 1 hour before or 2 hours after a meal, or with a light meal. Patients should drink at least 48 ounces (1.5 L) of water daily. Available in 100-, 200-, 333- and 400-mg capsules.
19. Each capsule contains 133.3 mg of lopinavir and 33.3 mg of ritonavir. The recommended dose is 533/133 mg bid when taken with efavirenz or nevirapine. The higher dose can also be tried if lopinavir resistance is suspected.
20. Nelfinavir is available in 250-mg and 625-mg tablets (available 1st quarter 2004) and should be taken with food.
21. Taken in combination with other protease inhibitors. Taken with food. Available as a 100-mg soft-gelatin capsule. The liquid formulation has an unpleasant taste; the manufacturer suggests taking it with chocolate milk or a liquid nutritional supplement.
22. 200-mg hard-gelatin capsules. Taken in combination with ritonavir: 400 mg SQV/400 mg RTV bid or 1000 mg SQV/100 mg RTV bid. Invirase should be taken with or within 2 hours after a full meal.
23. Available in kits containing a one-month supply of syringes and single-use vials with powder for a 90-mg dose and sterile water for reconstitution.
Drugs for HIV Infection

stavudine is combined with didanosine; this regimen is no longer recommended for initial treatment or treatment of pregnant women.

Zalcitabine (ddC, Hivid) – Zalcitabine appears to be less effective, less convenient and more toxic than the other NRTIs; it is used rarely.

Adverse effects – Dose-related peripheral neuropathy can be severe and persistent, and is more likely in patients also taking didanosine or stavudine. Other adverse effects include rash, stomatitis, esophageal ulceration and pancreatitis.

Zidovudine (AZT, ZDV, Retrovir) – Zidovudine is available alone and in fixed-dose combinations with lamivudine as *Combivir* and with lamivudine and abacavir as *Trizivir*. It can be given in combination with any other NRTI except for stavudine, which causes antagonism. Zidovudine plus lamivudine with or without a protease inhibitor has been recommended for post-exposure prophylaxis (PEP) against HIV infection after needlestick exposures (MMWR Recomm Rep 2001; 50 RR-11:1); most Medical Letter consultants would include a protease inhibitor in the PEP regimen. This combination has also been used after sexual exposure, although data are limited (JO Kahn et al, J Infect Dis 2001; 183:707).

Adverse effects – Adverse effects of zidovudine include anemia, neutropenia, nausea, vomiting, headache, fatigue, confusion, malaise, myopathy, hepatitis, and hyperpigmentation of oral mucosa and nail beds.

NUCLEOTIDE REVERSE TRANSCRIPTASE INHIBITOR — Nucleotides are phosphorylated nucleosides; nucleoside and nucleotide RTIs have similar mechanisms of action.

Tenofovir disoproxil fumarate (TDF, Viread) – Tenofovir DF is the only nucleotide RTI available for treatment of HIV. It is a prodrug of tenofovir, a potent inhibitor of HIV replication. Tenofovir DF is given once daily and is generally well tolerated. It is effective as part of initial
Drugs for HIV Infection

HIV therapy and has activity against some HIV strains that are resistant to other NRTIs. It is available alone or in combination with emtricitabine (Truvada). Tenofovir should not be used in three-drug combinations with abacavir/lamivudine or didanosine/lamivudine because of high rates of virologic failure (C Farthing et al, Antivir Ther 2003; 8 suppl 1: S195, abstract 43; www.fda.gov/medwatch/SAFETY/2003/ viread_dear-doc.pdf). Tenofovir is also active against HBV, even strains that are resistant to lamivudine (M Nunez et al, AIDS 2002; 16:2352; R Bruno et al, AIDS 2003; 17:783).

Adverse effects – The most common adverse effects have been nausea, vomiting and diarrhea. Renal failure, including a Fanconi-like syndrome, has been reported (A Karras et al, Clin Infect Dis 2003; 36:1070); tenofovir dosage must be decreased in patients with renal failure. In vitro studies suggest that mitochondrial toxicity with tenofovir may be less than with other NRTIs, but fatal lactic acidosis has been reported (P Rivas et al, BMJ 2003; 327:711).

When tenofovir is used in combination with ddI, the dose of ddI should be decreased. Tenofovir lowers the serum levels of atazanavir; the manufacturer recommends adding ritonavir (100 mg) to boost atazanavir levels when given in combination with tenofovir.

NON-NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS (NNRTIs) — These drugs are direct, non-nucleoside inhibitors of HIV-1 reverse transcriptase. Combinations of an NNRTI with NRTIs tend to be at least additive in reducing HIV replication in vitro.

HIV isolates that are resistant to NRTIs and protease inhibitors remain sensitive to NNRTIs, but cross-resistance is common within the NNRTI class. Resistance to NNRTIs develops rapidly if they are used alone or in combinations that do not completely suppress viral replication.
Class adverse effects – All NNRTIs can cause a rash that is sometimes severe. NNRTIs are metabolized by and can affect hepatic CYP 450 isozymes; drug interactions can occur with protease inhibitors and many other drugs (The Medical Letter Adverse Drug Interactions Program). Rifampin (Rifadin, and others) decreases levels of NNRTIs and should generally be avoided.

Delavirdine (DLV, Rescriptor) – Delavirdine is the least potent NNRTI. A study comparing delavirdine/zidovudine/didanosine, delavirdine plus either zidovudine or didanosine, and zidovudine/didanosine in patients with mean CD4 cell counts of 295 cells/mm³ and <6 months prior HIV treatment showed only modest benefit from the triple combination (GH Friedland et al, J Acquir Immune Defic Syndr 1999; 21:281). Unlike other NNRTIs, delavirdine increases serum concentrations of protease inhibitors.

Efavirenz (EFV, Sustiva) – Efavirenz is the only NNRTI approved for once-daily dosing. Efavirenz in combination with zidovudine/lamivudine has been more effective than indinavir/zidovudine/lamivudine or nelfinavir/zidovudine/lamivudine in lowering HIV RNA levels, even among
patients with high baseline RNA levels (>100,000 copies/mL), and has been better tolerated. Brief studies in treatment-experienced patients or those failing other regimens have shown that efavirenz in combination with at least two other new agents can be effective in suppressing plasma HIV RNA levels and raising CD4 cell counts.

Adverse effects – The most common adverse effects have been rash, dizziness, headache, insomnia and inability to concentrate. Vivid dreams, nightmares and hallucinations also occur frequently. CNS effects tend to occur between 1 and 3 hours after each dose, and often stop within a few weeks. Hypertriglyceridemia has occurred. Fetal abnormalities occurred in pregnant monkeys exposed to efavirenz; the drug should not be given to women who are, or are considering becoming, pregnant. Methadone dosage often needs to be increased if efavirenz is used concurrently.

Nevirapine (NVP, Viramune) – Nevirapine is most effective at raising CD4 cell counts and lowering viral load when combined with 2 NRTIs for initial HIV therapy.

Adverse effects – Nevirapine can cause severe hepatotoxicity, hepatic failure and death, particularly in patients with previously elevated transaminases or underlying hepatitis B or C, and when used for post-exposure prophylaxis (E Martinez et al, AIDS 2001; 15:1261; MMWR Morb Mortal Wkly Rep 2001; 49:1153). Fever, nausea and headache can occur. Rash is common early in treatment with nevirapine and can be more severe than with other NNRTIs; it may progress to Stevens-Johnson syndrome. To decrease the incidence of rash, nevirapine should be given 200 mg once daily for the first 2 weeks, and then 200 mg twice daily. In one study, 400 mg once daily was as effective as b.i.d. dosing (F Raffi et al, Antivir Ther 2000; 5:267), although hepatotoxicity and rash may be more frequent with once-daily dosing (F van Leth et al, 10th Conference on Retroviruses and Opportunistic Infections 2003, abstract 176). As
Drugs for HIV Infection

with efavirenz, the dose of methadone often needs to be increased if nevirapine is used concurrently.

PROTEASE INHIBITORS (PIs) — Protease inhibitors prevent cleavage of protein precursors essential for HIV maturation, infection of new cells and viral replication. Use of a protease inhibitor in combination with other drugs has led to marked clinical improvement and prolonged survival even in patients with advanced HIV infection. Most protease inhibitors potently suppress HIV *in vivo*. Combinations of two protease inhibitors are increasingly being used; one is usually ritonavir, which inhibits the metabolism and increases serum concentrations of other PIs.

Class adverse effects — Many protease inhibitors can cause gastrointestinal distress, increased bleeding in hemophiliacs, hyperglycemia, insulin resistance and hyperlipidemia and have been associated with increased risk of coronary artery disease (DC Rhew et al, Clin Infect Dis 2003; 37:959; L Calza et al, Int J Antimicrob Agents 2003; 22:89). They have also been associated with a syndrome of lipodystrophy including fat wasting, reaccumulation and redistribution. All, especially higher doses of ritonavir, can cause hepatotoxicity, which may occasionally be severe and is more common in patients who are co-infected with HBV or HCV (MS Sulkowski et al, JAMA 2000; 283:74).

All protease inhibitors are metabolized by and are inhibitors of hepatic CYP3A4; drug interactions are common and can be severe (*The Medical Letter Adverse Drug Interactions Program*). Rifampin (*Rifadin*, and others), which decreases the plasma levels of protease inhibitors, should generally be avoided. If a rifamycin must be used, rifabutin (*Mycobutin*) is preferred (M Narita et al, Clin Infect Dis 2000; 30:779).

Amprenavir (APV, *Agenerase*) — Amprenavir is available in large capsules and in an oral solution; full doses require 16 capsules or 187 mL
Drugs for HIV Infection

daily. Both preparations contain amounts of vitamin E that exceed the recommended daily allowance (RDA), so patients should be advised not to take vitamin E supplements concurrently. The total number of daily amprenavir tablets can be reduced by co-administering it with low doses of ritonavir (C Goujard et al, Antimicrob Agents Chemother 2003; 47:118).

Adverse effects – The most common adverse effects have been nausea, vomiting (especially in combination with zidovudine), perioral paresthesias and rash (JC Goodgame et al, Antivir Ther 2000; 5:215). Many patients with rash can continue or restart amprenavir if the rash is mild or moderate, but about 1% of patients have developed severe rashes, including Stevens-Johnson syndrome.

Atazanavir (ATV, Reyataz) – Atazanavir (Medical Letter 2003; 45:89) is the first single-agent protease inhibitor with once-daily dosing (amprenavir/ritonavir in combination was previously FDA-approved for once-daily treatment). In clinical trials it has been similar to efavirenz or nelfinavir in lowering viral load in treatment-naïve patients (I Sanne et al, J Acquir Immune Defic Syndr 2003; 32:18). Atazanavir alone was less effective than lopinavir/ritonovir, but atazanavir/ritonavir was comparable to lopinavir/ritonavir in treatment-experienced patients (L Nieto-Cisneros et al and R Badaro et al, Antivir Ther 2003, 8 suppl 1:S212, abstracts 117 and 118).

Adverse effects – Atazanavir causes indirect hyperbilirubinemia. It has had no adverse effects on lipid profiles, but the drug’s long-term effects are unknown. It can cause PR prolongation and should be used with caution in patients with cardiac conduction abnormalities. Co-administration with tenofovir or efavirenz decreases serum levels of atazanavir; this may be overcome by addition of low-dose ritonavir. Atazanavir should not be used in combination with indinavir, which also can cause hyperbilirubinemia.
Drugs for HIV Infection

Fosamprenavir calcium (Lexiva) – Fosamprenavir calcium, a prodrug of amprenavir, was recently approved by the FDA for use in HAART. In patients who have not previously been treated with a protease inhibitor, fosamprenavir can be taken once daily combined with ritonavir, or twice daily with or without ritonavir. In patients who are treatment-experienced, it should be taken twice daily with ritonavir. If coadministered with ritonavir and efavirenz, the ritonavir dosage should be increased. Fosamprenavir will likely replace amprenavir, because the total number of pills taken each day is lower (4 versus 16).

Adverse effects – Adverse effects are similar to those with amprenavir, but in clinical studies the incidence of nausea, vomiting and severe rash was lower. Unlike amprenavir, which should not be taken with a fatty meal, fosamprenavir has no food restrictions.

Indinavir (IDV, Crixivan) – Indinavir has good oral bioavailability. Indinavir 800 mg combined with ritonavir 100 mg (both b.i.d. for ease of use) was comparable in effectiveness to indinavir alone in the usual dosage of 800 mg t.i.d. (JA Arnaiz et al, AIDS 2003; 17:831).

Adverse effects – In addition to adverse effects similar to those of other protease inhibitors, indinavir causes elevation of indirect bilirubin, indinavir-containing kidney stones and renal insufficiency, dermatologic changes including alopecia, dry skin and mucous membranes, and paronychia and ingrown toenails (J Garcia-Silva et al, Drug Saf 2002; 25:993). Patients should drink at least 1.5-2 liters of water daily to minimize renal adverse effects. Gallstones have also been reported (R Verdon et al, Clin Infect Dis 2002; 35:e57).

Lopinavir/ritonavir (LPV/RTV, Kaletra) – Lopinavir is available in the US only in a fixed-dose combination with ritonavir (Medical Letter 2001; 43:1). In treatment-naïve patients a regimen with lopinavir/ritonavir was more effective than a nelfinavir-containing regimen (S Walmsley et al, N
Drugs for HIV Infection

Adverse Effects – Lopinavir/ritonavir is generally well tolerated. Mild diarrhea, nausea, headaches and asthenia have occurred.

Nelfinavir (NFV, Viracept) – Nelfinavir is a commonly used protease inhibitor because it is well tolerated. It appears to be less potent than lopinavir/ritonavir or efavirenz.

Adverse effects – Diarrhea, which may resolve with continued use, and increased food intake, are its main adverse effects.

Ritonavir (RTV, Norvir) – Ritonavir is well absorbed from the gastrointestinal tract and at full doses potently inhibits HIV, but due to poor tolerability it is now used mainly in doses of 100 to 400 mg b.i.d. to increase the serum concentrations and decrease the dosage frequency of other protease inhibitors.

Adverse effects – Adverse reactions are common to full doses of ritonavir, but less common with the low doses used in PI combinations. Ritonavir can cause hypertriglyceridemia, altered taste, nausea, vomiting and, rarely, circumoral and peripheral paresthesias. It has frequent adverse interactions with other drugs.

Saquinavir (SQV, Fortovase, Invirase) – When administered as a single protease inhibitor, a soft-gel preparation (Fortovase) with improved bioavailability and potency has largely replaced the older hard-gelatin capsule formulation (Invirase), which is poorly absorbed. In healthy volunteers, plasma levels of Invirase and Fortovase were comparable when combined with ritonavir, and Invirase was better tolerated (M Kurowski et al, HIV Med 2003; 4:94). In one study, saquinavir 1000 mg b.i.d. combined with ritonavir 100 mg b.i.d. had similar virologic efficacy and superior tolerability compared to indinavir 800 mg b.i.d.
combined with ritonavir 100 mg b.i.d. (UB Dragsted et al, J Infect Dis 2003; 188:635). Aside from the large number of capsules daily with Fortovase, saquinavir is usually well tolerated.

FUSION INHIBITOR — After HIV binds to the host cell surface, a conformational change occurs in the transmembrane glycoprotein sub-unit (gp41) of the viral envelope, facilitating fusion of the viral and host cell membranes, and entry of the virus into the cell. Fusion inhibitors bind to gp41 and prevent the conformational change (JM Kilby and JJ Eron, N Engl J Med 2003; 348:2228).

Enfuvirtide (T-20, Fuzeon) – Enfuvirtide (Medical Letter 2003; 45:49) is the first fusion inhibitor approved by the FDA for treatment of HIV infection and is indicated for treatment-experienced patients with ongoing HIV replication despite current antiretroviral use. It is administered by subcutaneous injection twice daily. In two open-label trials in highly treatment-experienced patients, the addition of enfuvirtide to a background regimen optimized by resistance testing resulted in superior virologic suppression and CD4 cell count increases compared to optimized background regimen alone (JP Lalezari et al, N Engl J Med 2003; 348:2175; A Lazzarin et al, N Engl J Med 2003; 348:2186).

Adverse effects – Almost all patients develop local injection site reactions to enfuvirtide, usually consisting of mild or moderate pain, erythema, induration, nodules and cysts (RA Ball et al, J Am Acad Dermatol 2003; 49:826). Other adverse effects include eosinophilia, systemic hypersensitivity reactions, and possibly an increased incidence of bacterial pneumonia.

PREVENTION OF PERINATAL TRANSMISSION — Zidovudine alone, started at 14-34 weeks of gestation and continued in the infant for the first 6 weeks of life, reduced HIV transmission from 26% to 8% (EM Connor
et al, N Engl J Med 1994; 331:1173). Zidovudine alone taken orally for just 3-4 weeks before delivery and during labor has been reported to decrease the risk of HIV transmission by 50% (N Shaffer et al, Lancet 1999; 353:773).

Most clinicians now would give combination therapy with zidovudine plus another NRTI and either a protease inhibitor or nevirapine throughout pregnancy to prevent transmission of HIV to the offspring. Women not already on therapy should consider waiting until after 10-12 weeks of gestation to begin.

Already in labor – For women who are already in labor and have had no antiretroviral therapy, zidovudine given to the mother and continued in the infant for 6 weeks or given only to the infant for 6 weeks beginning within 48 hours after birth decreased HIV transmission (NA Wade et al, N Engl J Med 1998; 339:1409). A combination of zidovudine plus lamivudine given at the onset of labor and to the infant for one week is also effective (Petra Study Team, Lancet 2002; 359:1178). Single-dose nevirapine given to the mother at the onset of labor and to the infant within 72 hours of delivery can also decrease the risk of perinatal transmission and was more effective than zidovudine alone given to the mother during labor and to the infant for 7 days (LA Guay et al, Lancet 1999; 354:795; JB Jackson et al, Lancet 2003; 362:859). Single-dose nevirapine, however, has been associated with the emergence of nevirapine-resistant strains in 15-20% of women and 46% of infants; this may not be long-lasting but theoretically could compromise future treatment of mother and child (SH Eshleman et al, AIDS 2001; 15:1951). It is not a good choice unless no other options are available.

Drugs not to be used – Fatal lactic acidosis from the combination of stavudine and didanosine has occurred in pregnant women; this combination should not be used. Efavirenz should be avoided in pregnancy because of potential teratogenicity.
Drugs for HIV Infection

SUMMARY — For initial therapy of HIV infection, reasonable first choices include either an NNRTI, often efavirenz because it has fewer adverse effects than nevirapine, or the PI combination lopinavir/ritonavir (Kaletra), each combined with 2 NRTIs. If an NNRTI- or PI-based regimen cannot be used, a final option for initial therapy would be abacavir plus lamivudine and either zidovudine or stavudine. For more advanced disease, combinations should include three or more active drugs based on resistance testing. Enfuvirtide-based regimens may be particularly helpful in heavily pretreated patients. For all patients, regular monitoring of HIV viral load and CD4 cell count should be used to guide therapy. NNRTIs and protease inhibitors have many adverse interactions with each other and with other drugs (The Medical Letter Adverse Drug Interactions Program).
The FDA has approved emtricitabine/tenofovir (Truvada – Gilead) and abacavir/lamivudine (Epzicom – GSK), two new fixed-dose combinations of nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), for once-daily use in treatment of HIV infection. Two other fixed-dose NRTI combinations were previously approved for twice-daily dosing. Dual NRTI therapy is generally used in either an NNRTI (non-nucleoside reverse transcriptase inhibitor)-based or a PI (protease inhibitor)-based regimen.1

CLINICAL STUDIES — No clinical studies with these combinations have been published. A 48-week non-inferiority study in treatment-naïve HIV patients also treated with efavirenz found virologic suppression (HIV RNA <400 copies/mL) in 84% of patients treated with fixed-dose emtricitabine/tenofovir once daily and in 73% with zidovudine/lamivudine (Combivir) twice daily.2 In similar patients, fixed-dose abacavir/lamivudine plus efavirenz produced virologic suppression in 77% after 24 weeks.3 Two non-inferiority studies in treatment-experienced patients with HIV found that, in combination with other antiretrovirals, taking fixed-dose abacavir/lamivudine once daily was not inferior to taking abacavir twice daily with lamivudine once or twice daily.4,5

ADVERSE EFFECTS — Adverse effects with the combinations have generally been similar to those with the drugs taken separately. In one study, more severe hypersensitivity reactions and severe diarrhea occurred with abacavir once daily than with twice-daily dosing. Abacavir/lamivudine is contraindicated in patients with hepatic impairment and those with a CrCl <50 mL/min. Emtricitabine/tenofovir is contraindicated in patients with a CrCl <30 mL/min; the dosing interval should be increased to once every 48 hours in patients with a CrCl of 30-49 mL/min.
CONCLUSION — Emtricitabine/tenofovir (Truvada) and abacavir/lamivudine (Epzicom) can simplify HIV treatment regimens by reducing pill burden and potentially increasing adherence. Because of the risk of hypersensitivity reactions with abacavir, Epzicom should not be the first choice for initial treatment of HIV infection.

The drugs of choice for non-HIV viral infections with their dosages and cost are listed in the tables that begin on page 159. Some of the indications and dosages recommended here have not been approved by the FDA.

DRUGS FOR HERPES SIMPLEX AND VARICELLA-ZOSTER VIRUS

ACYCLOVIR (Zovirax, and others) — Available in topical, oral, and intravenous (IV) formulations, acyclovir is used to treat herpes simplex virus (HSV) and varicella-zoster virus (VZV) infections. Acyclovir cream reduces the duration of herpes labialis by about half a day (SL Spruance et al, Antimicrob Agents Chemother 2002; 46:2238). Oral acyclovir is effective for both primary and recurrent genital HSV infections (A Wald et al, Clin Infect Dis 2002; 34:944). Long-term oral suppression with acyclovir decreases the frequency of symptomatic genital recurrences and asymptomatic viral shedding. Oral acyclovir begun within 24 hours after the onset of rash, decreases the severity of primary varicella infection and can also be used to treat localized zoster. IV acyclovir is the drug of choice for treatment of HSV infections that are visceral, disseminated or involve the central nervous system (CNS) and for serious or disseminated VZV infections.

Adverse Effects – By any route of administration, acyclovir is generally well tolerated. Gastrointestinal (GI) disturbances and headache can occur. Given IV, the drug may cause phlebitis and inflammation at sites of infusion or extravasation. IV acyclovir can also cause reversible renal dysfunction due to crystalline nephropathy; rapid infusion, dehydration,
Drugs for Non-HIV Viral Infections

renal insufficiency and high dosage increase the risk. IV and rarely oral acyclovir have been associated with encephalopathy, including tremors, hallucinations, seizures and coma.

In rats, high doses of acyclovir cause testicular atrophy and high concentrations cause chromosomal damage, but no adverse effects on sperm production or cytogenetic alterations in peripheral blood lymphocytes have been detected in patients who have taken the drug orally for more than 10 years to suppress recurrent genital herpes.

Pregnancy – Although acyclovir is not approved for treatment of pregnant women, its use during pregnancy has not been associated with an increased risk of congenital abnormalities, and many clinicians prescribe the drug for treatment of first episodes of genital herpes during pregnancy. Suppression of recurrent genital herpes in pregnant women near term reduces the need for cesarean sections to avoid neonatal herpes infections.

Resistance – Acyclovir-resistant HSV occurs mainly in immunocompromised patients treated with the drug; isolates are usually also resistant to valacyclovir and famciclovir. Resistant HSV infection in HIV-positive patients has been associated with progressive mucosal disease and, rarely, visceral involvement. Acyclovir-resistant VZV strains in HIV-positive patients have been associated with chronic cutaneous lesions and, rarely, invasive disease.

Infections with acyclovir-resistant HSV or VZV may respond to foscarnet or cidofovir, which are primarily used for treatment of CMV infection and are discussed on page 165.

FAMCICLOVIR (Famvir) — Famciclovir, which is rapidly converted to penciclovir after oral administration, is an alternative to acyclovir. It is
<table>
<thead>
<tr>
<th>Infection</th>
<th>Drugs</th>
<th>Adult dosage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oralabial</td>
<td>Acyclovir – Zovirax</td>
<td>5% cream 5x/d x 4d</td>
<td>$33.06</td>
</tr>
<tr>
<td></td>
<td>Docosanol – Abreva</td>
<td>10% cream 5x/d until healing</td>
<td>15.99</td>
</tr>
<tr>
<td></td>
<td>Penciclovir – Denavir</td>
<td>1% cream applied q2h while awake x 4d</td>
<td>$23.54</td>
</tr>
<tr>
<td>Oral</td>
<td>Acyclovir – generic Zovirax</td>
<td>400 mg PO 5x/d 4q x 5d</td>
<td>45.25</td>
</tr>
<tr>
<td></td>
<td>Famciclovir – Famvir</td>
<td>500 mg PO bid x 7d</td>
<td>119.14</td>
</tr>
<tr>
<td></td>
<td>Valacyclovir – Valtrex</td>
<td>2 g PO q12h x 1d</td>
<td>35.36</td>
</tr>
<tr>
<td>Genital first episode</td>
<td>Acyclovir – generic Zovirax</td>
<td>400 mg PO tid or 200 mg</td>
<td>31.50</td>
</tr>
<tr>
<td></td>
<td>Zovirax</td>
<td>PO 5x/d x 7-10d</td>
<td>59.85</td>
</tr>
<tr>
<td></td>
<td>Famciclovir – Famvir</td>
<td>250 mg PO tid x 7-10d</td>
<td>89.25</td>
</tr>
<tr>
<td></td>
<td>Valacyclovir – Valtrex</td>
<td>1 g PO bid x 7-10d</td>
<td>123.76</td>
</tr>
<tr>
<td>episodic treatment of recurrences</td>
<td>Acyclovir – generic Zovirax</td>
<td>800 mg tid x 2d</td>
<td>16.29</td>
</tr>
<tr>
<td></td>
<td>Zovirax</td>
<td>or 400 mg PO tid x 3-5d</td>
<td>30.06</td>
</tr>
<tr>
<td></td>
<td>Famciclovir – Famvir</td>
<td>125 mg PO bid x 3-5d</td>
<td>23.40</td>
</tr>
<tr>
<td></td>
<td>Valacyclovir – Valtrex</td>
<td>500 mg PO bid x 3d</td>
<td>29.04</td>
</tr>
<tr>
<td>suppression of recurrences</td>
<td>Acyclovir – generic Zovirax</td>
<td>400 mg PO bid</td>
<td>108.60</td>
</tr>
<tr>
<td></td>
<td>Zovirax</td>
<td>250 mg PO bid</td>
<td>200.40</td>
</tr>
<tr>
<td></td>
<td>Famciclovir – Famvir</td>
<td>1 g PO bid x 3-5d</td>
<td>255.00</td>
</tr>
<tr>
<td></td>
<td>Valacyclovir – Valtrex</td>
<td>500 mg - 1 g PO 1x/d</td>
<td>145.20</td>
</tr>
<tr>
<td>Mucocutaneous (immunocompromised)</td>
<td>Acyclovir – generic IV Zovirax IV</td>
<td>5 mg/kg IV q8h x 7-14d</td>
<td>900.00</td>
</tr>
<tr>
<td></td>
<td>Zovirax IV generic PO</td>
<td>or 400 mg PO 5x/d x 7-10d</td>
<td>1,118.10</td>
</tr>
<tr>
<td></td>
<td>Zovirax PO</td>
<td>116.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Famciclovir – Famvir</td>
<td>500 mg bid x 7-10d</td>
<td>119.14</td>
</tr>
<tr>
<td></td>
<td>Valacyclovir – Valtrex</td>
<td>500 mg or 1 g bid x 7-10d</td>
<td>67.76</td>
</tr>
<tr>
<td>Encephalitis</td>
<td>Acyclovir – generic Zovirax</td>
<td>10-15 mg/kg IV q8h x 14-21d</td>
<td>3,540.00</td>
</tr>
<tr>
<td></td>
<td>Zovirax</td>
<td>4,397.86</td>
<td></td>
</tr>
<tr>
<td>Neonatal</td>
<td>Acyclovir – generic Zovirax</td>
<td>10-20 mg/kg IV q8h x 14-21d</td>
<td>180.00</td>
</tr>
<tr>
<td></td>
<td>Zovirax</td>
<td>223.62</td>
<td></td>
</tr>
<tr>
<td>Keratoconjunctivitis</td>
<td>Trifluridine – generic Viroptic</td>
<td>1% solution 1 drop q2h</td>
<td>81.98</td>
</tr>
<tr>
<td></td>
<td>(max 9 drops/q)</td>
<td>(max 9 drops/q)</td>
<td>94.88</td>
</tr>
<tr>
<td>Acyclovir-resistant (severe infection, immunocompromised)</td>
<td>Foscarnet – Foscavir</td>
<td>40 mg/kg IV q8h x 14-21d</td>
<td>1,500.00</td>
</tr>
</tbody>
</table>

1. Dosage adjustment may be required for renal insufficiency.
2. Based on the lowest recommended dosage for a 70-kg patient, based on the most recent data from retail pharmacies nationwide, available from NDCHealth, a healthcare information services company (January 31, 2005). For IV drugs, the cost of administration may increase the total cost. For generic drugs, average cost is given.
3. Based on purchase of 2-g tube.
4. Available without a prescription.
5. Based on purchase of 0.07 oz (2 g) tube on drugstore.com (March 10, 2005).
6. Based on purchase of 1.5-g tube containing 15 mg of penciclovir.
7. For severe initial genital herpes, IV acyclovir (5-10 mg/kg q8h for 5-7d) can be used.
8. Not approved by the FDA for this indication.
9. If antiviral therapy is variably effective and only if started early.
10. No published data are available to support 3 days’ use.
11. For recurrent HSV in HIV-positive patients, 500 mg bid for 7d.
12. Some clinicians discontinue treatment for 1-2 mos/yr to assess the frequency of recurrences.
13. For 30 days’ therapy.
14. 500 mg once/d in patients with <10 recurrences/yr and 500 mg bid or 1 g/d in patients >10 recurrences/yr.
15. Pediatric dosage (<12 yrs of age) is 10 mg/kg IV q8h x 7-14d.
17. Pediatric dosage (3 mos-12 yrs of age) is 20 mg/kg IV q8h x 14-21d.
18. Based on a 3-kg infant.
19. An ophthalmic preparation of acyclovir is available in some countries. Treatment of HSV ocular infections should be supervised by an ophthalmologist; duration of therapy and dosage depend on response.
20. Once the cornea has re-epithelialized the dose can be decreased to 1 drop q4h x 7d.
21. Based on purchase of a 7.5-mL bottle.
Drugs for Non-HIV Viral Infections

Drugs for Varicella-Zoster Virus

<table>
<thead>
<tr>
<th>Infection</th>
<th>Drugs</th>
<th>Adult dosage1</th>
<th>Cost2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varicella</td>
<td>Acyclovir — generic</td>
<td>20 mg/kg (800 mg max) PO qid x 5d</td>
<td>$69.40</td>
</tr>
<tr>
<td></td>
<td>Zovirax</td>
<td></td>
<td>128.40</td>
</tr>
<tr>
<td>Herpes zoster</td>
<td>Valacyclovir — Valtrex</td>
<td>1 g PO tid x 7d</td>
<td>185.64</td>
</tr>
<tr>
<td></td>
<td>Famciclovir — Famvir</td>
<td>500 mg PO tid x 7d</td>
<td>178.71</td>
</tr>
<tr>
<td></td>
<td>Acyclovir — generic</td>
<td>800 mg PO 5x/d x 7-10d</td>
<td>121.45</td>
</tr>
<tr>
<td></td>
<td>Zovirax</td>
<td></td>
<td>224.70</td>
</tr>
<tr>
<td>Varicella or zoster in immunocompromised</td>
<td>Acyclovir — generic</td>
<td>10 mg/kg IV q8h x 7d3</td>
<td>1,602.00</td>
</tr>
<tr>
<td></td>
<td>Zovirax</td>
<td></td>
<td>2,236.204</td>
</tr>
<tr>
<td>Acyclovir-resistant zoster</td>
<td>Foscarnet5 — Foscavir</td>
<td>40 mg/kg IV q8h x 10d</td>
<td>1,050.00</td>
</tr>
</tbody>
</table>

1. Dosage adjustment may be required for renal insufficiency.
2. Based on the lowest recommended dosage for a 70-kg patient, according to NDCH Health (January 31, 2005). For IV drugs, the cost of administration may increase the total cost. For generic drugs, average cost is given.
3. Pediatric dosage (≤12 yrs of age) is 20 mg/kg q8h x 7-10d.
5. Not approved by the FDA for this indication.

Effective in treating first episodes and recurrences of genital HSV and for chronic suppression. In immunocompromised patients with herpes zoster, famciclovir, begun within 72 hours after onset of rash is effective in speeding the resolution of zoster-associated pain and shortening the duration of postherpetic neuralgia (SK Tyring et al, Arch Fam Med 2000; 9:863).

Adverse Effects – Famciclovir has been generally well tolerated. Headache, nausea and diarrhea have been reported. Like acyclovir, famciclovir has been associated with dose-related adverse effects on testicular function in animals, but not in humans. In female rats, 600 mg/kg/day of famciclovir for 2 years increased the incidence of mammary adenocarcinoma.

Resistance – HSV and VZV strains resistant to acyclovir are generally also resistant to famciclovir.

VALACYCLOVIR (Valtrex) — Valacyclovir is an L-valyl ester of acyclovir that is metabolized to acyclovir after oral administration, resulting
in higher serum concentrations than with oral acyclovir. Acyclovir serum concentrations following high doses of oral valacyclovir resemble those following IV administration of acyclovir. A one-day treatment regimen of valacyclovir reduced the duration of oral herpes by about 1 day (Med Lett Drugs Ther 2002; 44:95). In first-episode or recurrent genital herpes, valacyclovir twice daily is as effective as acyclovir given 5 times a day. Valacyclovir 500 mg once daily is effective for suppression of genital HSV and one study of discordant couples found that 8 months of suppressive valacyclovir taken by the infected partner reduced the risk of HSV transmission to the susceptible partner by about half (L Corey et al, N Engl J Med 2004; 350:11). A higher dose (500 mg b.i.d. or 1 g once/d) may be needed for suppression in patients with frequent recurrences.

Adverse Effects – Valacyclovir is generally well tolerated; adverse effects are similar to those with acyclovir. GI disturbance, headache, rash, CNS effects such as hallucinations and confusion, and nephrotoxicity can occur. A thrombotic thrombocytopenic purpura/hemolytic uremic syndrome has been reported in some severely immunocompromised patients taking high doses.

Resistance – Isolates resistant to acyclovir are also resistant to valacyclovir.

TOPICAL DRUGS FOR HERPES SIMPLEX —

Penciclovir (Denavir) – Topical penciclovir 1% cream applied every 2 hours while awake decreases the healing time of recurrent orolabial herpes by about 0.7 days in immunocompetent adults (SL Spruance et al, JAMA 1997; 277:1374).

Docosanol (Abreva) – Topical docosanol cream, available without a prescription, started within 12 hours of prodromal symptoms, decreases
Drugs for Non-HIV Viral Infections

Drugs for Cytomegalovirus Infection

<table>
<thead>
<tr>
<th>Infection</th>
<th>Drugs</th>
<th>Adult dosage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytomegalovirus (CMV)³</td>
<td>Valganciclovir – Valcyte</td>
<td>900 mg PO bid x 21d</td>
<td>$2630.88</td>
</tr>
<tr>
<td>or Ganciclovir – Cytovene</td>
<td>5 mg/kg IV q12h x 14-21d</td>
<td>836.00</td>
<td></td>
</tr>
<tr>
<td>or 6 mg/kg IV 5x/wk</td>
<td>710.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or 1 g PO tid⁶</td>
<td>1,631.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>average generic</td>
<td>1 g PO tid⁶</td>
<td>1,362.48</td>
<td></td>
</tr>
<tr>
<td>Vitraset implant⁷</td>
<td>4.5 mg intraocularly q5-8 mos</td>
<td>5,000.00³</td>
<td></td>
</tr>
<tr>
<td>or Foscarnet – Foscavir</td>
<td>60 mg/kg IV q8h or 90 mg/kg IV q12h x 14-21d followed by</td>
<td>2,250.00</td>
<td></td>
</tr>
<tr>
<td>or 90-120 mg/kg IV once/d³</td>
<td>2,400.00⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Cidofovir – Vistide</td>
<td>5 mg/kg IV once/wk x 2 then</td>
<td>1,622.70</td>
<td></td>
</tr>
<tr>
<td>or 5 mg/kg IV q2wks¹⁰</td>
<td>1,622.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Fomivirsen⁷ – Vitravene</td>
<td>330 mcg intravitreally q2wks x 2 then 1x/mo</td>
<td>2,000.00⁵</td>
<td></td>
</tr>
</tbody>
</table>

1. Dosage adjustment may be required for renal insufficiency.
2. Based on the lowest recommended dosage for a 70-kg patient, according to NDCHealth (January 31, 2005).
3. Chronic suppression is recommended in AIDS and in other highly immunocompromised patients with retinitis. Both oral ganciclovir (1g tid) and valganciclovir (900 mg once/d) are approved for prevention of CMV disease in solid organ transplant recipients.
4. Based on 4 wks’ maintenance therapy.
6. Lower doses of ganciclovir have been used to minimize leukopenia in renal transplant patients with renal insufficiency who are also taking azathioprine (Imuran) or mycophenolate mofetil (CellCept) (SM Flechner et al, Transplantation 1998; 66:1682).
7. Systemic therapy is recommended to prevent CMV disease in the contralateral eye and other organ systems.
8. Cost of one implant.
9. Higher doses (120 mg/kg/d) may be more effective but less well tolerated.
10. To minimize renal toxicity patients should receive 1 L 0.9% saline over 1-2 hrs prior to a 1-hour cidofovir infusion; they should also receive oral probenicid 2 g 3 hours prior to infusion of cidofovir and 1 g 2 and 8 hrs after the infusion. Patients who can tolerate additional fluid should receive a second 1 L of 0.9% saline, started immediately after the cidofovir infusion. Not recommended for patients with serum creatinine >1.5 mg/dL, creatinine clearance ≤55 mL/min or proteinuria ≥100 mg/dL (2+ by dipstick). Dose reduction to 3 mg/kg is recommended for serum creatinine 0.3-0.4 mg/dL above baseline.

healing time by about half a day in recurrent orolabial herpes (Med Lett Drugs Ther 2002; 44:95).

Trifluridine (Viroptic) – Trifluridine is a nucleoside analog active against herpes viruses, including acyclovir-resistant strains. Marketed in an ophthalmic preparation, it is approved for treatment of HSV keratoconjunctivitis and recurrent epithelial keratitis. It is also active against vaccinia virus and has been used to treat accidental ocular infection following smallpox vaccination (JS Pepose et al, Am J Ophthalmol 2003; 136:343).
DRUGS FOR CYTOMEGALOVIRUS

GANCICLOVIR (Cytovene) — IV ganciclovir is approved for both induction and maintenance treatment of cytomegalovirus (CMV) retinitis in immunocompromised patients and for prevention of CMV infection in transplant recipients. It is also used to treat CMV infections of other sites (colon, esophagus, lungs, etc) and for preemptive treatment of immunosuppressed patients with CMV antigenemia or viremia (MMWR Recomm Rep 2000; 49[RR-10]:1). Oral ganciclovir is less effective than IV because of lower bioavailability. It has largely been replaced by oral valganciclovir, which achieves plasma concentrations similar to those with IV ganciclovir.

Prophylactic oral ganciclovir, or IV ganciclovir followed by either oral ganciclovir or high-dose oral acyclovir, reduces the risk of CMV in patients who have had liver transplantation, including seronegative recipients of seropositive donations (E Gane et al, Lancet 1997; 350:1729; DJ Winston and RW Busuttil, Transplantation 2003; 75:229).

An intraocular implant that releases ganciclovir (Vitrastert – Bausch & Lomb) has been more effective than IV ganciclovir for CMV retinitis in the eye with the implant, but is not effective systemically.

Adverse Effects – Ganciclovir is teratogenic, carcinogenic and mutagenic and causes aspermatogenesis in animals. Granulocytopenia and thrombocytopenia, which are usually reversible, are more common with the IV formulation. Severe myelosuppression may occur more frequently when the drug is given concurrently with zidovudine (AZT, Retrovir), azathioprine (Imuran) or mycophenolate mofetil (CellCept). Granulocyte-colony-stimulating factors (GM-CSF; G-CSF) have been used to treat ganciclovir-induced neutropenia. Other adverse effects of
systemic ganciclovir include retinal detachment in patients with CMV retinitis, fever, rash, phlebitis, confusion, abnormal liver function, renal dysfunction, headache, GI toxicity and, rarely, psychiatric disturbances and seizures.

Resistance — Ganciclovir resistance may be associated with persistent viremia and progressive disease. Ganciclovir-resistant CMV can emerge and cause late morbidity in transplant recipients given prophylactic ganciclovir (AP Limaye et al, Lancet 2000; 356:645). CMV strains resistant to ganciclovir *in vitro* may be susceptible to foscarnet or cidofovir.

VALGANCICLOVIR (Valcyte) — Oral valganciclovir, an oral pro-drug of ganciclovir, achieves plasma concentrations similar to those following IV administration of ganciclovir; it has largely replaced oral ganciclovir (MD Pescovitz et al, Antimicrob Agents Chemother 2000; 44:2811). Valganciclovir is as effective as IV ganciclovir for induction and maintenance therapy of CMV retinitis in patients with AIDS and has replaced both IV and oral ganciclovir for treatment of patients with CMV retinitis whose lesions are peripheral and not immediately sight threatening (DF Martin et al, N Engl J Med 2002; 346:1119; MMWR Recomm Rep 2004; 53[RR-15]:1). Valganciclovir once daily is as effective as oral ganciclovir t.i.d. in prevention of CMV disease in mismatched (D+, R-) solid organ transplant recipients (C Paya et al, Am J Transplant 2004; 4:611), but has not been approved by the FDA for use in liver transplant recipients.

Adverse Effects — Adverse effects are similar to those of IV ganciclovir.

Resistance — Isolates that are resistant to ganciclovir are also resistant to valganciclovir.
FOSCARNET (Foscavir) — Foscarnet is an alternative to ganciclovir and valganciclovir for treatment of CMV infection. It is approved for use in CMV retinitis, including progressive disease due to ganciclovir-resistant strains, and for treatment of acyclovir-resistant HSV or VZV infections. Foscarnet is more expensive and generally less well tolerated than ganciclovir, and requires controlled infusion rates and large volumes of fluid. In allogeneic stem cell transplant recipients who develop CMV infection, treatment with foscarnet is as effective as IV ganciclovir and causes less hematologic toxicity (P Reusser et al, Blood 2002; 99:1159).

Adverse Effects — Renal dysfunction often develops during treatment with foscarnet and is usually reversible, but renal failure requiring dialysis may occur. Renal toxicity is increased in patients receiving other nephrotoxic drugs; adequate hydration may decrease the risk. Nausea, vomiting, anemia, fatigue, headache, genital ulceration, CNS disturbances, hypo- and hypercalcemia, hypo- and hyperphosphatemia, hypokalemia and hypomagnesemia have also occurred. The risk of severe hypocalcemia, sometimes fatal, is increased by concurrent IV pentamidine (Pentam). Foscarnet given with zidovudine may increase the risk of anemia. It causes chromosomal damage *in vitro* and *in vivo*.

Resistance — HSV, VZV and CMV strains resistant to foscarnet can emerge during treatment. Combined use of foscarnet and ganciclovir may benefit some patients, but CMV strains resistant to both ganciclovir and foscarnet have been reported.

CIDOFOVIR (Vistide) — IV cidofovir given once weekly for 2 weeks and then once every 2 weeks for maintenance therapy can delay progression of CMV retinitis in patients with AIDS.
Drugs for Non-HIV Viral Infections

Adverse Effects – About 25% of patients discontinue cidofovir because of adverse effects such as nephrotoxicity, neutropenia and metabolic acidosis. Iritis, uveitis or ocular hypotony can occur. To decrease the risk of nephrotoxicity, IV 0.9% saline and oral probenecid must be given with each cidofovir dose. Cidofovir is contraindicated in patients taking other nephrotoxic agents. Adverse effects are more common in patients simultaneously taking antiretroviral drugs. The drug is oncogenic in animals. Topical cidofovir (not commercially available) causes local irritation and ulceration, especially in concentrations of 3% or higher.

Resistance – Ganciclovir-resistant CMV isolates may be cross-resistant to cidofovir. Acyclovir-resistant HSV or VZV frequently are susceptible to cidofovir.

FOMIVIRSEN (Vitravene) — Fomivirsen, an antisense oligonucleotide, is FDA-approved for intravitreal treatment of CMV retinitis in HIV-infected patients who cannot tolerate or have not responded to other drugs. The manufacturer recommends not giving fomivirsen to patients who have been treated with cidofovir in the previous 2 to 4 weeks because of increased risk of ocular inflammation. The most commonly reported adverse effects include iritis, vitritis, increased intraocular pressure and vision changes. In vivo resistance has not been observed (CM Perry and JA Balfour, Drugs 1999; 57:375).

DRUGS FOR INFLUENZA

AMANTADINE (Symmetrel, and others) and RIMANTADINE (Flumadine, and others) — Treatment with oral amantadine or rimantadine begun within 48 hours after the onset of illness decreases the duration of fever and symptoms by about 1 day. Whether these drugs decrease influenza-related complications or are effective in treating severe influen-
Drugs for Non-HIV Viral Infections

za pneumonia is unknown. Neither amantadine nor rimantadine is effective against influenza B virus.

Either amantadine or rimantadine is 70% to 90% effective in preventing influenza A when started before exposure (RB Couch, N Engl J Med 2000; 343:1778). Prophylaxis with amantadine or rimantadine has been used to control institutional influenza outbreaks and to protect high-risk patients immunized after or <2 weeks before an epidemic has begun. The drugs can also be used as prophylaxis for immunodeficient patients who may respond poorly to influenza vaccine, and in unvaccinated persons who are at high risk for influenza or are caring for high-risk patients.

Adverse Effects – Amantadine may cause anorexia, nausea, peripheral edema and, particularly in the elderly, minor CNS effects such as nervousness, anxiety, insomnia, lethargy, difficulty concentrating, and light-headedness. These effects usually diminish after the first week of use and rapidly disappear after the drug is stopped. Serious CNS effects (confusion, hallucinations, seizures) can occur, especially with old age, renal insufficiency, seizure disorders, concomitant CNS stimulant or anticholinergic drug therapy and underlying psychiatric illness. Amantadine is excreted mainly in urine, and dosage must be reduced for creatinine clearance below 50 mL/min.

Rimantadine has GI adverse effects similar to those of amantadine, but a lower risk of CNS effects. It is extensively metabolized by the liver before renal excretion, so dosage reductions are not needed until the creatinine clearance falls below 10 mL/min.

Pregnancy – Both amantadine and rimantadine are teratogenic in animals and contraindicated during pregnancy.
Drugs for Non-HIV Viral Infections

Resistance – Influenza A viruses cross-resistant to both amantadine and rimantadine can emerge when either drug is used to treat influenza infection; they only occur rarely in nature. Viruses resistant to amantadine and rimantadine are transmissible from person to person and retain their pathogenicity; up to now, they have remained susceptible to oseltamivir and zanamivir. Resistance to amantadine and rimantadine has occurred in human isolates of avian H5N1 influenza virus (TH Tran et al, N Engl J Med 2004; 350:1179).

OSELTAMIVIR (Tamiflu) — This oral neuraminidase inhibitor, started within 36 hours of symptom onset, can decrease the severity and duration of symptoms caused by either influenza A or B in both children and adults and decreases the risk of respiratory complications, antibiotic use and hospitalization (RJ Whitley et al, Pediatr Infect Dis J 2001; 20:127; L Kaiser et al, Arch Intern Med 2003; 163:1667).
Drugs for Non-HIV Viral Infections

Taken prophylactically once daily for 7 days, it appears to be effective in preventing clinical influenza (R Welliver et al, JAMA 2001; 285:748). The indications for prophylaxis with oseltamivir are the same as those for amantadine. Oseltamivir has been effective against some avian strains of influenza in animal studies and is an option for prophylaxis and treatment of H5N1 disease (IA Leneva et al, Antiviral Res 2000; 48:101).

Adverse Effects – Nausea and vomiting can occur. Taking the drug with food decreases the incidence of nausea. In juvenile rats, very high doses of oseltamivir (~250 times the recommended pediatric dose) have been associated with deaths and unexpectedly high concentrations in brain, possibly related to an immature blood-brain barrier. Oseltamivir has been used in infants, but is FDA-approved only for patients 1 year and older (M Kiso et al, Lancet 2004; 364:759).

Resistance – During treatment, resistant variants emerge in about 1% of immunocompetent adults and in about 9% of children. No person-to-person transmission of resistant variants has been documented to date.

ZANAMIVIR (Relenza) — Started within 2 days after onset of symptoms, this orally inhaled neuraminidase inhibitor can shorten the duration of illness and may decrease the incidence of lower respiratory complications. It is FDA-approved only for treatment of acute uncomplicated influenza A or B in patients ≥7 years of age. Once-daily inhaled zanamivir is effective for prophylaxis of influenza (AS Monto et al, J Infect Dis 2002; 186:1582), but is not FDA-approved for this indication. Zanamivir has been effective against some avian strains of influenza in animal studies and is also an option for prophylaxis and treatment of H5N1 disease (IA Leneva et al, Antimicrob Agents Chemother 2001; 45:1216).

Adverse Effects – Nasal and throat discomfort can occur. Bronchospasm, sometimes severe, has been reported uncommonly in patients with reactive airway disease; zanamivir should be avoided in
Drugs for Non-HIV Viral Infections

such patients. It has rarely caused bronchospasm in previously healthy persons with influenza.

Resistance – Zanamivir is active against amantadine/rimantadine-resistant influenza A and some oseltamivir-resistant strains. Zanamivir resistance has been described in an immunocompromised patient.

DRUGS FOR HEPATITIS B AND C

INTERFERON ALFA — Interferon alfa is available as alfacon-1 (Infergen), alfa-n3 (Alferon N), alfa-2a (Roferon-A), alfa-2b (Intron A), pegylated alfa-2b (PEG-Intron – Med Lett Drugs Ther 2001; 43:54), and pegylated alfa-2a (Pegasys – Med Lett Drugs Ther 2003; 45:19).

In about one third of adults and children with chronic hepatitis B, treatment with interferon alfa-2b leads to loss of HBeAg, return to normal aminotransferase activity, sustained histological improvement and, in adults, a lower risk of progressive liver disease. However, AIDS patients coinfected with hepatitis B virus (HBV) generally respond poorly to interferon. Hepatitis D (hepatitis delta virus), which occurs only in patients infected with HBV, may respond to treatment with high doses of interferon alfa, but relapse is common.

Peginterferon alfa-2a may be superior to conventional interferon (WG Cooksley et al, J Viral Hepat 2003; 10:298) and has been associated with higher rates of sustained response than lamivudine in patients with HBeAg-negative chronic hepatitis B (P Marcellin et al, N Engl J Med 2004; 351:1206). Peginterferon alfa-2b monotherapy has been effective for patients with HBeAg-positive chronic hepatitis B; addition of lamivudine was not superior to monotherapy (HL Janssen et al, Lancet 2005; 365:123).
Drugs for Non-HIV Viral Infections

Adverse Effects – Intramuscular or subcutaneous injection of interferon is commonly associated with an influenza-like syndrome, especially during the first week of therapy. High-dose or chronic therapy may be limited by bone marrow suppression, profound fatigue, myalgia, weight loss, rash, cough, increased susceptibility to bacterial infections, psychiatric syndromes including depression, anxiety, psychosis, mania, agitation and neurocognitive impairment, increased aminotransferase activity, alopecia, hypo- or hyperthyroidism, tinnitus, reversible hearing loss, auto-antibody formation, retinopathy, pneumonitis and possibly cardiotoxicity. Injection-site reactions and dose-related neutropenia and thrombocytopenia have been more common with pegylated interferon. Autoimmune chronic hepatitis and other autoimmune diseases like thyroiditis may be induced or exacerbated by treatment with interferon.
Drugs for Non-HIV Viral Infections

Granulocyte-colony stimulating factors and erythropoietin (Procrit, Epogen) have been used to treat interferon-induced bone marrow suppression. Depression caused by interferon alfa might be treatable with an antidepressant without stopping the interferon.

RIBAVIRIN (*Copegus, Rebetol, and others*) — Combination treatment of **HCV** with peginterferon alfa and oral ribavirin has produced higher sustained response rates than peginterferon alone and is now considered the regimen of choice for chronic HCV. Patients relapsing after interferon monotherapy may still respond to the combination. Ribavirin is not effective as monotherapy for HCV.

Adverse Effects — Systemic ribavirin has been associated with hemolytic anemia. Oral ribavirin plus interferon appears to cause a higher incidence of cough, pruritus and rash than interferon alone. Acute deterioration of respiratory function has been reported with ribavirin aerosol in infants and in adults with bronchospastic lung disease.

Pregnancy — Ribavirin is teratogenic and embryotoxic in animals, and is contraindicated in pregnancy. Pregnant women should not directly care for patients receiving ribavirin aerosol. Patients exposed to the drug should not conceive children during or for 6 months after treatment.

LAMIVUDINE (*3TC; Epivir HBV*) — This oral antiretroviral nucleoside analog used to treat HIV is also FDA-approved for treatment of chronic HBV infection. A trial in Asian patients with chronic HBV infection treated for 2 years found that 52% taking lamivudine 100 mg daily had sustained suppression of HBV DNA, 50% had normalization of aminotransferase activity and seroconversion to anti-HBeAg occurred in 27% (YF Liaw et al, Gastroenterology 2000; 119:172). In patients with cirrhosis or advanced fibrosis, treatment for up to 42 months reduces the risk of clinical progression and hepatocellular carcinoma development by about half.
Drugs for Non-HIV Viral Infections

Lamivudine is also active in chronically infected children aged ≥2 years, with 55% showing sustained normalization of aminotransferase levels, 61% DNA suppression, and 22% anti-HBe seroconversion at 1 year of therapy (MM Jonas et al, N Engl J Med 2002; 346:1706). Lamivudine appears to reduce the risk of HBV reinfection in liver transplant recipients. Combination therapy with lamivudine and peginterferon alfa-2b, but not standard interferon alfa, may lead to higher response rates than lamivudine monotherapy (HL Chan et al, Ann Intern Med 2005; 142:240). However, in one study the combination of peginterferon alfa-2b and lamivudine was no better than peginterferon alfa-2b alone (HL Janssen et al, Lancet 2005; 365:123).

Adverse Effects – Lamivudine is generally well tolerated. Headache, nausea and dizziness are rare. Pancreatitis has been reported in adults and children coinfected with HIV.

Drugs for Hepatitis B and C

<table>
<thead>
<tr>
<th>Infection</th>
<th>Drugs</th>
<th>Adult dosage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis B Virus (HBV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic hepatitis*</td>
<td>Lamivudine[^3] – Epivir HBV</td>
<td>100 mg PO 1x/d x 1-3 yrs[^4]</td>
<td>$2,452.80</td>
</tr>
<tr>
<td></td>
<td>Interferon alfa-2b – Intron A</td>
<td>5 million units/d or 10 million units 3x/wk SC or IM x 4 mos[^5]</td>
<td>7,292.40</td>
</tr>
<tr>
<td></td>
<td>Adefovir – Hepsera</td>
<td>10 mg PO 1x/d x 1-3 yrs[^4]</td>
<td>6,486.05</td>
</tr>
<tr>
<td>Hepatitis C Virus (HCV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic hepatitis</td>
<td>Peginterferon alfa-2b – PEG-Intron</td>
<td>1.5 mcg/kg once/wk SC x 48 wks[^7]</td>
<td>19,043.04</td>
</tr>
<tr>
<td></td>
<td>plus ribavirin – generic Rebetol</td>
<td>800-1200 mg PO/d x 48 wks[^7]</td>
<td>9,932.16</td>
</tr>
<tr>
<td>or</td>
<td>Peginterferon alfa-2a – Pegasys</td>
<td>180 mcg once/wk SC x 48 wks[^7]</td>
<td>17,812.80</td>
</tr>
<tr>
<td></td>
<td>plus ribavirin – generic Copegus</td>
<td>800-1200 mg PO/d x 48 wks[^7]</td>
<td>9,932.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9,354.24</td>
</tr>
<tr>
<td>Acute hepatitis</td>
<td>Interferon alfa-2b[^6] – Intron A</td>
<td>5 million units/d x 3 wks, then 3x/wk x 20 wks</td>
<td>1,875.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,688.30</td>
</tr>
</tbody>
</table>

* Entecavir (Baraclude) also approved for treatment of HBV infection. See page 177.
1. Dosage adjustment may be required for renal insufficiency.
2. Based on the lowest recommended dosage for a 70-kg patient, according to NDCHealth (January 31, 2005).
3. In patients coinfected with HIV, use of lamivudine to treat HBV may result in loss of its usefulness in treating the HIV because patients with active HIV replication rapidly develop resistance to lamivudine monotherapy. *Epivir HBV*, which is formulated in a lower dose, cannot be substituted for lamivudine (*Epivir*) in HIV treatment regimens.
4. Optimal duration of therapy is uncertain. Some experts recommend that treatment continue for 6 mos after anti-HBe seroconversion and negative or stable HBV DNA levels are achieved (EB Keeffe et al, Clin Gastroenterol Hepatology 2004; 2:87). Pediatric dose is 3 mg/kg/d (maximum 100 mg/dose).
5. Pediatric dosage is 3 million units/m^2 3x/wk SC for first wk, then 6 million units/m^2 (maximum 10 million units) 3x/wk for 16 to 24 wks.
6. Not approved by the FDA for this indication.
7. Shorter courses (24 rather than 48 wks) and lower ribavirin doses (800 rather than 1000 or 1200 mg/d) appear to be effective for HCV genotypes 2 and 3 but not genotype 1, which is the most common in North America (SJ Hadziyannis et al, Ann Intern Med 2004; 140:346).

(YF Liaw et al, N Engl J Med 2004; 351:1521). Lamivudine is also active in chronically infected children aged ≥2 years, with 55% showing sustained normalization of aminotransferase levels, 61% DNA suppression, and 22% anti-HBe seroconversion at 1 year of therapy (MM Jonas et al, N Engl J Med 2002; 346:1706). Lamivudine appears to reduce the risk of HBV reinfection in liver transplant recipients. Combination therapy with lamivudine and peginterferon alfa-2b, but not standard interferon alfa, may lead to higher response rates than lamivudine monotherapy (HL Chan et al, Ann Intern Med 2005; 142:240). However, in one study the combination of peginterferon alfa-2b and lamivudine was no better than peginterferon alfa-2b alone (HL Janssen et al, Lancet 2005; 365:123).

(173)
Drugs for Non-HIV Viral Infections

Resistance – Resistance emerges in 14% to 32% of HBV-infected patients receiving lamivudine for one year and increases at 5 years to 69% (EB Keeffe et al, Clin Gastroenterol Hepatol 2004; 2:87). Resistant variants have been associated with hepatitis flares (YF Liaw et al, Hepatology 1999; 30:567) and progressive liver disease in both chronic hepatitis patients and liver transplant recipients.

ADEFOVIR DIPIVOXIL (Hepsera) — This phosphonate nucleoside analog, administered as the oral prodrug, inhibits replication of HBV, including variants resistant to lamivudine (Med Lett Drugs Ther 2002; 44:105). Adefovir treatment of HBeAg-positive or -negative chronic hepatitis B is associated with marked reductions in HBV DNA levels, aminotransferase normalization in 48% to 72% of patients, and histologic improvements in 53% to 64% at 48 weeks (SJ Hadziyannis et al, N Engl J Med 2003; 348:800; P Marcellin et al, N Engl J Med 2003; 348:808). More prolonged therapy results in higher rates of response; anti-HBeAg seroconversion occurs in 23% by 72 weeks. The antiviral effects of adefovir are similar in lamivudine-susceptible and -resistant HBV infections (MG Peters et al, Gastroenterology 2004; 126:91). Some experts recommend adefovir over lamivudine for long-term treatment of HBeAg-negative or cirrhotic patients because of the high risk of emergence of lamivudine resistance (EB Keeffe et al, Clin Gastroenterol Hepatol 2004; 2:87). Combination studies with other anti-HBV drugs are in progress.

Adverse Effects – Doses of adefovir used for HBV are generally well tolerated but may be associated with asthenia, headache, diarrhea and abdominal pain. Higher than recommended doses (30-60 mg/d) and pre-existing renal impairment are risk factors for azotemia and renal tubular dysfunction. Hepatitis flares may occur after adefovir is stopped.

Resistance – Adefovir-resistant variants emerge at a low frequency (3.9% of patients after 3 years of use) and have been associated with a
rebound in HBV DNA levels (P Angus et al, Gastroenterology 2003; 125:292); these variants may remain susceptible to lamivudine.

ENTECAVIR (Baraclude) — A carbocyclic analogue of guanosine, entecavir is a new drug for treatment of chronic hepatitis B. [Since this article was published, The Medical Letter has reviewed entecavir (Baraclude). See page 177.]

DRUGS FOR PAPILLOMA VIRUS, RESPIRATORY SYNCYTIAL VIRUS, AND OTHER VIRUSES

IMIQUIMOD (Aldara) — This immunomodulator is FDA-approved for topical treatment of external and perianal genital warts, which are caused by papillomavirus (Med Lett Drugs Ther 2004; 46:42). Gradual clearance of warts occurs in about 50% of patients over an average of 8 to 10 weeks. Recurrences are less common than after ablative therapies. Imiquimod is also effective for a high percentage of patients with too many actinic keratoses to be treated with liquid nitrogen.

Adverse Effects – Application site reactions (irritation, pruritus, flaking, erosion) are generally mild to moderate in intensity and resolve within 2 weeks of cessation. Pigment changes may persist. Systemic adverse effects including fatigue and influenza-like illness have been reported (Med Lett Drugs Ther 2004; 46:92).

RIBAVIRIN — A synthetic nucleoside, ribavirin used as an aerosol (Virazole) may decrease morbidity in some children hospitalized with respiratory syncytial virus (RSV) bronchiolitis and pneumonia (American Academy of Pediatrics Committee on Infectious Diseases eds, Report of the Committee on Infectious Diseases 26th ed, Evanston, Ill: American Academy of Pediatrics, 2003, page 523), but because of its
Drugs for Non-HIV Viral Infections

Potential adverse effects it is not generally recommended for such use. Pregnant women should not directly care for patients receiving ribavirin aerosol. (For adverse effects and use in pregnancy, see page 172.)

Other viruses – IV ribavirin appears to decrease mortality in Lassa fever and in hantavirus hemorrhagic fever with renal syndrome. In vitro, high concentrations inhibit West Nile virus, but clinical data are lacking. There are case reports of systemic ribavirin use with some success in cases of LaCrosse encephalitis, Nipah virus encephalitis, and Congo-Crimean hemorrhagic fever, but it is ineffective in SARS and hantavirus cardiopulmonary syndrome (GJ Mertz et al, Clin Infect Dis 2004; 39:1307).

CIDOFOVIR — IV and topical cidofovir (3% cream once daily; not commercially available) have been reported to produce resolution of molluscum contagiosum in immunosuppressed patients (E De Clercq, Clin Microbiol Rev 2003; 16:569). Cidofovir has also been used for adenovirus infection in allogeneic stem cell transplant recipients (P Ljungman et al, Bone Marrow Transplant 2003; 31:481). In vitro, cidofovir is active against vaccinia, variola, and other pox viruses and has been effective in animal models of lethal infection (M Bray and CJ Roy, J Antimicrob Chemother 2004; 54:1). (For adverse effects, see page 166.)
Entecavir (Baraclude) for Chronic Hepatitis B

Entecavir (Baraclude – Bristol-Myers Squibb), a nucleoside analog, has been approved by the FDA for treatment of adults with active chronic hepatitis B virus (HBV) infection.

DRUGS FOR HEPATITIS B — Chronic HBV infection is currently treated with interferon alfa, lamivudine or adefovir. Lamivudine is much better tolerated than interferon and much less expensive, but resistance to the drug occurs in about 15%-30% of patients after one year and in about 50% after 3 years. Resistance has been less of a problem with adefovir, which is active against lamivudine-resistant strains, but can cause nephrotoxicity.

<table>
<thead>
<tr>
<th>PHARMACOLOGY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of action</td>
<td>Inhibition of HBV polymerase</td>
</tr>
<tr>
<td>Formulation</td>
<td>0.5- and 1-mg film-coated tablets and oral solution 0.05 mg/mL</td>
</tr>
<tr>
<td>Tmax</td>
<td>0.5-1.5 hour</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Minimal</td>
</tr>
<tr>
<td>Excretion</td>
<td>Renal (62%-73% excreted unchanged)</td>
</tr>
</tbody>
</table>

CLINICAL STUDIES — FDA approval was based on 3 unpublished randomized, double-blind trials (described in the package insert) comparing treatment with entecavir to lamivudine in adults with chronic HBV. Some patients had previously been treated with interferon alfa. These studies are summarized in the table on page 178. No studies comparing entecavir to adefovir have been published. HBV isolates from lamivudine-refractory patients failing entecavir therapy remained susceptible to adefovir *in vitro*. Unlike lamivudine and adefovir, entecavir has no activity against HIV.

ADVERSE EFFECTS — Lactic acidosis and severe hepatomegaly with steatosis have been reported with use of other nucleoside analogs. The most common adverse effects of entecavir have been headache,
Entecavir (*Baraclude*) for Chronic Hepatitis B

fatigue, dizziness and nausea. Severe acute exacerbations of HBV have been reported after discontinuation of anti-hepatitis B drugs, including entecavir. Entecavir is not a substrate, inhibitor or inducer of the cytochrome P450 enzyme system. It is carcinogenic in rodents.

CONCLUSION — Entecavir (*Baraclude*) taken orally once a day as monotherapy appears to be superior to lamivudine for patients with chronic HBV infection, but susceptibility to entecavir may be reduced in patients refractory to lamivudine. How it compares with adefovir remains to be established, but HBV isolates from lamivudine-refractory patients failing entecavir therapy have remained susceptible to adefovir *in vitro*.

Parasitic infections are found throughout the world. With increasing travel, immigration, use of immunosuppressive drugs and the spread of AIDS, physicians anywhere may see infections caused by previously unfamiliar parasites. The table below lists first-choice and alternative drugs for most parasitic infections. The brand names and manufacturers of the drugs are listed on page 190.

Drugs for Parasitic Infections

Original publication date – August 2004

#### INFECTION	DRUG	ADULT DOSAGE	PEDIATRIC DOSAGE
Acanthamoeba keratitis | **Drug of choice:** See footnote 1 | | |
AMEBIASIS (Entamoeba histolytica) | **asymptomatic**
Drug of choice: Iodoquinol 650 mg tid x 20d
OR Paromomycin 25-35 mg/kg/d in 3 doses x 20d**
Alternative: Diloxanide furoate 2* 500 mg tid x 10d
mild to moderate intestinal disease
Drug of choice: Metronidazole 750 mg tid x 7-10d
OR Tinidazole 5 2 g once daily x 5d
severe intestinal and extraintestinal disease
Drug of choice: Metronidazole 750 mg tid x 7-10d
OR Tinidazole 5 2 g once daily x 5d | 30-40 mg/kg/d (max. 2g) in 3 doses x 20d
25-35 mg/kg/d in 3 doses x 7d
15 mg/kg/d in 3 doses x 10d
35-50 mg/kg/d in 3 doses x 7-10d
50 mg/kg/d (max. 2g) x 1 dose x 3d | 30-40 mg/kg/d (max. 2g) in 3 doses x 20d
25-35 mg/kg/d in 3 doses x 7d
15 mg/kg/d in 3 doses x 10d
35-50 mg/kg/d in 3 doses x 7-10d
50 mg/kg/d (max. 2g) x 1 dose x 3d

AMEBIC MENINGOENCEPHALITIS, primary and granulomatous Naegleria

Drug of choice: Amphotericin B 6,7
1.5 mg/kg/d in 2 doses x 3d, then 1 mg/kg/d x 6d
2. The drug is not available commercially, but as a service can be compounded by Panorama Compounding Pharmacy, 6744 Balboa Blvd, Lake Balboa, CA 91406 (800-247-9767; www.panoramapharmacy.com) or Medical Center Pharmacy, New Haven, CT (203-688-6816; www.medcenterpharmacy.com).
3. Treatment should be followed by a course of iodoquinol or paromomycin in the dosage used to treat asymptomatic amebiasis.
4. Nitazoxanide is FDA-approved as a pediatric oral suspension for treatment of Cryptosporidium in immunocompetent children <12 years old and for Giardia (Med Lett Drugs Ther 2003; 45:29). It may also be effective for mild to moderate amebiasis (E Diaz et al, Am J Trop Med Hyg 2003; 68:384). Nitazoxanide is available in 500-mg tablets and an oral suspension; it should be taken with food.
5. A nitro-imidazole similar to metronidazole, tinidazole was recently approved by the FDA and appears to be as effective and better tolerated than metronidazole. Although the FDA has not yet approved tinidazole for the treatment of amebiasis, it is available in the United States as a generic drug.
6. A similar drug is also used outside the U.S. for the treatment of Acanthamoeba keratitis. The drug is available as a 0.1% solution for topical use and as a 1% solution for ophthalmic use.
7. Nitazoxanide is FDA-approved as a pediatric oral suspension for treatment of Cryptosporidium in immunocompetent children <12 years old and for Giardia (Med Lett Drugs Ther 2003; 45:29). It may also be effective for mild to moderate amebiasis (E Diaz et al, Am J Trop Med Hyg 2003; 68:384). Nitazoxanide is available in 500-mg tablets and an oral suspension; it should be taken with food.
8. A nitroimidazole similar to metronidazole, tinidazole was recently approved by the FDA and appears to be as effective and better tolerated than metronidazole. Although the FDA has not yet approved tinidazole for the treatment of amebiasis, it is available in the United States as a generic drug.
9. A similar drug is also used outside the U.S. for the treatment of Acanthamoeba keratitis. The drug is available as a 0.1% solution for topical use and as a 1% solution for ophthalmic use.
<table>
<thead>
<tr>
<th>INFECTION</th>
<th>DRUG</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEBIC MENINGOENCEPHALITIS (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balamuthia mandrillaris</td>
<td>See footnote 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sappinia diploidea</td>
<td>See footnote 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANCYLOSTOMA caninum (Eosinophilic enterocolitis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abendazol6</td>
<td>400 mg once</td>
<td>400 mg once</td>
<td></td>
</tr>
<tr>
<td>OR Mebendazole</td>
<td>100 mg bid x 3d</td>
<td>100 mg bid x 3d</td>
<td></td>
</tr>
<tr>
<td>OR Pyrantel pamoate7</td>
<td>11 mg/kg (max. 1g) x 3d</td>
<td>11 mg/kg (max. 1g) x 3d</td>
<td></td>
</tr>
<tr>
<td>OR Endoscopic removal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancyllostoma duodenale, see HOOKWORM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGIOSTRONGYLISIS (Angiostrongylus cantonensis, Angiostrongylus costaricensis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See footnote 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANISAKIASIS (Anisakis spp.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of choice:</td>
<td>Surgical or endoscopic removal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCARIASIS (Ascaris lumbricoides, roundworm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abendazol6</td>
<td>400 mg once</td>
<td>400 mg once</td>
<td></td>
</tr>
<tr>
<td>OR Mebendazole</td>
<td>100 mg bid x 3d or 500 mg once</td>
<td>100 mg bid x 3d or 500 mg once</td>
<td></td>
</tr>
<tr>
<td>OR Ivermectin7</td>
<td>150-200 mcg/kg once</td>
<td>150-200 mcg/kg once</td>
<td></td>
</tr>
<tr>
<td>BABESIOSIS (Babesia microti)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drugs of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clindamycin7</td>
<td>1.2 g bid IV or 600 mg tid PO x 7-10d</td>
<td>20-40 mg/kg/d PO in 3 doses x 7-10d</td>
<td></td>
</tr>
<tr>
<td>OR plus quinine7</td>
<td>650 mg tid PO x 7-10d</td>
<td>25 mg/kg/d PO in 3 doses x 7-10d</td>
<td></td>
</tr>
<tr>
<td>OR Atovaquone7</td>
<td>750 mg bid x 7-10d</td>
<td>20 mg/kg bid x 7-10d</td>
<td></td>
</tr>
<tr>
<td>Alternatives:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metronidazol7</td>
<td>750 mg tid x 5d</td>
<td>35-50 mg/kg/d in 3 doses x 5d</td>
<td></td>
</tr>
<tr>
<td>OR Iodoquinol7</td>
<td>650 mg tid x 20d</td>
<td>40 mg/kg/d in 3 doses x 20d</td>
<td></td>
</tr>
<tr>
<td>BAYLISACARIAISIS (Baylisascaris procyonis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See footnote 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLASTOCYSTIS hominis infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See footnote 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPILLARIASIS (Capillaria philippinensis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mebendazol6</td>
<td>200 mg bid x 20d</td>
<td>200 mg bid x 20d</td>
<td></td>
</tr>
<tr>
<td>Alternatives:</td>
<td>Abendazol6</td>
<td>400 mg daily x 10d</td>
<td>400 mg daily x 10d</td>
</tr>
<tr>
<td>Chagas’ disease, see TRYPANOSOMIASIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clonorchis sinensis, see FLUKE infection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Availability problems. See table on page 190.

9. A free-living leptomyxid ameba that causes subacute to fatal granulomatous CNS disease. Several cases of Balamuthia encephalitis have been successfully treated with fluocytosine, pentamidine, fluconazole and sulfadiazine plus either azithromycin or clarithromycin (phenothiazines were also used) combined with surgical resection of the CNS lesion (TR Deetz et al, Clin Infect Dis 2003; 37:1304; SJ eng et al, Arch Pathol Lab Med 2004; 128:466). 3
10. A free-living ameba not previously known to be pathogenic to humans. It has been successfully treated with azithromycin, IV pentamidine, itraconazole and fluconazole combined with surgical resection of the CNS lesion (BB Gelman et al, Neuropathol Exp Neurol 2003; 32:900).
11. Most patients have a self-limited course and recover completely. Analgesics, corticosteroids and careful removal of CSF at frequent intervals can relieve symptoms from increased intracranial pressure (V Lo Re III and SJ Gluckman, Am J Med 2003; 114:217). No antihelminthic drug is proven to be effective and some patients have worsened with therapy (TJ Slom et al, N Engl J Med 2002; 346:668). In one report, however, mebendazole and a corticosteroid appeared to shorten the course of infection (H-C Tsai et al, Am J Med 2001; 111:309).
13. Exchange transfusion has been used in severely ill patients and those with high (>10%) parasitemia (J C Hatcher et al, Clin Infect Dis 2001; 32:1137). In patients who were not severely ill, combination therapy with atovaquone and azithromycin was as effective as clindamycin and quinine and may have been better tolerated (PJ Krause et al, N Engl J Med 2002; 346:668). In one report, however, mebendazole and a corticosteroid appeared to shorten the course of infection (H-C Tsai et al, Am J Med 2001; 111:309).
14. Use of tetracyclines is contraindicated in pregnancy and in children <8 years old.
15. No drugs have been demonstrated to be effective. Abendazol 25 mg/kg/d x 20d started as soon as possible (up to 3d after possible infection) might prevent clinical disease and is recommended for children with known exposure (injection of racoon stool or contaminated soil) (MMWR Morb Mortal Wkly Rep 2002; 50:233; P Gavin and ST Shulman, Pediatr Infect Dis 2003; 22:635). Mebendazole, thiabendazole, levamisole or ivermectin could be tried if albendazole were not available. Steroid therapy may be helpful, especially in eye and CNS infections. Ocular baylisascaris has been treated successfully using laser photoacoagulation therapy to destroy the intraretinal larvae.
16. Clinical significance of these organisms is controversial; metronidazol 750 mg tid x 10d, iodoquinol 650 mg tid x 20d or trimethoprim-sulfamethoxazol 1 DS tab bid x 7d have been reported to be effective (DJ Stieral and PFL Bonham, Clin Microbiol Rev 1996; 9:563; UZ Ok et al, Am J Gastroenterol 1999; 94:3245). Metronidazol resistance may be common (K Harish et al, Trop Med Int Health 1999; 4:274). Nitazoxanide has been effective in children (E Diaz et al, Am J Trop Med Hyg 2003; 68:384).
Drugs for Parasitic Infections

<table>
<thead>
<tr>
<th>INFECTION</th>
<th>DRUG</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRYPTOSPORIDIOSIS (Cryptosporidium)</td>
<td>Non-HIV infected
Drug of choice: Nitazoxanide*
Choice: Paromomycin* OR Mebendazole OR Albendazole</td>
<td>500 mg bid x 3d</td>
<td>1-3yrs: 100 mg bid x 3d</td>
</tr>
<tr>
<td>HIV infected</td>
<td>Drug of choice: See footnote 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUTANEOUS LARVA MIGRANS (creeping eruption, dog and cat hookworm)</td>
<td>Drug of choice: Albendazole OR Ivermectin OR Thiabendazole</td>
<td>400 mg daily x 3d OR 200 mcg/kg daily x 1-2d OR 200 mg/kg daily x 1-2d</td>
<td>400 mg daily x 3d OR 200 mg/kg daily x 1-2d OR 200 mg/kg daily x 1-2d</td>
</tr>
<tr>
<td>CYCLOSPORIASIS (Cyclospora cayetanensis)</td>
<td>Drug of choice: Trimethoprim-sulfamethoxazole OR TMP 160 mg/SMX OR TMP 5 mg/kg, SMX</td>
<td>800 mg (1 DS tab) bid x 7-10d</td>
<td>25 mg/kg bid x 7-10d</td>
</tr>
<tr>
<td>CYSTICERCOSIS, see TAPEWORM infection</td>
<td>Drug of choice: Iodoquinol</td>
<td>650 mg tid x 20d</td>
<td>30-40 mg/kg/d (max. 2g) in 3 doses x 20d</td>
</tr>
<tr>
<td>DIENTAMAEOBA fragilis infection</td>
<td>Drug of choice: Pyrantel pamoate OR Paromomycin OR Tetracycline* OR Metronidazole OR Albendazole</td>
<td>11 mg/kg base once (max. 1 g); repeat in 2wks OR 25-35 mg/kg/d in 3 doses x 7d OR 500 mg qid x 10d OR 500-750 mg tid x 10d OR 400 mg once; repeat in 2wks</td>
<td>11 mg/kg base once (max. 1 g); repeat in 2wks OR 25-35 mg/kg/d in 3 doses x 7d OR 40 mg/kg/d (max. 2g) in 4 doses x 10d OR 100 mg once; repeat in 2wks OR 40-40 mg/kg/d in 3 doses x 10d</td>
</tr>
<tr>
<td>Diphyllobothrium latum, see TAPEWORM infection</td>
<td>Drug of choice: Iodoquinol</td>
<td>See footnote 21</td>
<td></td>
</tr>
<tr>
<td>Entamoeba histolytica, see AMEBIASIS</td>
<td>Drug of choice: Pyrantel pamoate OR Iodoquinol OR Nitazoxanide</td>
<td>11 mg/kg base once (max. 1 g); repeat in 2wks OR 650 mg tid x 20d OR 500 mg bid x 3d</td>
<td>11 mg/kg base once (max. 1 g); repeat in 2wks OR 30-40 mg/kg/d (max. 2g) in 3 doses x 20d OR 1-3yrs: 100 mg bid x 3d</td>
</tr>
<tr>
<td>Enterobius vermicularis (pinworm) infection</td>
<td>Drug of choice: Nitazoxanide OR Mebendazole OR Albendazole</td>
<td>6 mg/kg in 3 doses x 14d OR 100 mg once; repeat in 2wks OR 400 mg once; repeat in 2wks</td>
<td>6 mg/kg in 3 doses x 14d OR 6 mg/kg in 3 doses x 14d</td>
</tr>
<tr>
<td>Filariasis*</td>
<td>Drug of choice: Iodoquinol OR Mebendazole OR Albendazole</td>
<td>25-35 mg/kg/d in 3 doses x 7d OR 400 mg once; repeat in 2wks</td>
<td>25-35 mg/kg/d in 3 doses x 7d OR 400 mg once; repeat in 2wks</td>
</tr>
<tr>
<td>Wuchereria bancrofti, Brugia malayi, Brugia timori</td>
<td>Drug of choice: Diethylcarbamazine OR Diethylcarbamazine* OR Ivermectin OR Doxycycline</td>
<td>6 mg/kg in 3 doses x 14d OR 6 mg/kg in 3 doses x 14d OR 6 mg/kg in 3 doses x 14d</td>
<td>6 mg/kg in 3 doses x 14d</td>
</tr>
<tr>
<td>Loa loa</td>
<td>Drug of choice: Albendazole</td>
<td>400 mg once; repeat in 2wks</td>
<td>400 mg once; repeat in 2wks</td>
</tr>
<tr>
<td>Filariasis*</td>
<td>Drug of choice: Iodoquinol OR Paromomycin OR Tetracycline* OR Metronidazole OR Albendazole</td>
<td>7 25-35 mg/kg/d in 3 doses x 7d OR 500 mg qid x 10d OR 500-750 mg tid x 10d OR 400 mg once; repeat in 2wks</td>
<td>7 25-35 mg/kg/d in 3 doses x 7d OR 40 mg/kg/d (max. 2g) in 4 doses x 10d OR 400 mg once; repeat in 2wks</td>
</tr>
<tr>
<td></td>
<td>* Availability problems. See table on page 290.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17. Nitazoxanide has not consistently been shown to be superior to placebo in HIV-infected patients (B Amadi et al, Lancet 2002; 360:1375). A small randomized, double-blind trial in symptomatic HIV-infected patients who were not receiving HAART found paromomycin similar to placebo (RG Hewitt et al, Clin Infect Dis 2000; 31:1984).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21. Since all family members are usually infected, treatment of the entire household is recommended.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22. Since all family members are usually infected, treatment of the entire household is recommended.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23. Antihelminths or corticosteroids may be required to decrease allergic reactions to disintegration of microfilaria from treatment of filarial infections, especially those caused by Loa loa. Endosymbiotic Wolbachia bacteria may have a role in filarial development and host response, and may represent a new target for therapy. Treatment with doxycycline 100 or 200 mg/d x 4-6wks in symptomatic filariasis and onchocerciasis has resulted in substantial loss of Wolbachia with subsequent block of microfilaria production and absence of microfilaria when followed for 24 months after treatment (A Hoerauf et al, Med Microbiol Immunol 2003; 192:211; A Hoerauf et al, BMJ 2003; 326:207).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24. Most symptoms caused by adult worm. Single dose combination of albendazole (400 mg) with either ivermectin (200 mcg/kg) or diethylcarbamazine 6 mg/kg is effective for reduction or suppression of W. bancrofti microfilaria but does not kill the adult forms (D Addiss et al, Cochrane Database Syst Rev 2004; CD003753).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25. Treatment of choica is slow extraction of worm combined with wound care (C Greenaway, CMAJ 2004; 170:495). 10 days' treatment with metronidazole 250 mg tid in adults and 25 mg/kg/d in 3 doses in children is not curative, but decreases inflammation and facilitates removal of the worm. Mebendazole 400-800 mg/d x 6d has been reported to kill the worm directly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26. In heavy infections with Loa loa, rapid killing of microfilariae can provoke an encephalopathy. Apherisis has been reported to be effective in lowering microfilarial counts in patients heavily infected with Loa loa (EA Ottesen, Infect Dis Clin North Am 1993; 7:619). Albendazole or ivermectin have also been used to reduce microfilariae; albendazole is preferred because of its slower onset of action and lower risk of encephalopathy (AD Klion et al, J Infect Dis 1993; 168:202; M Kambila et al, Am J Trop Med Hyg 1998; 58:458). Albendazole may be useful for treatment of loiasis when diethylcarbamazine is ineffective or cannot be used, but repeated courses may be necessary (AD Klion et al, Clin Infect Dis 1999; 29:680). Diethylcarbamazine, 300 mg once/week, has been recommended for prevention of loiasis (TB Nutman et al, N Engl J Med 1988; 319:752).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

181
Drugs for Parasitic Infections

<table>
<thead>
<tr>
<th>INFECTION</th>
<th>DRUG</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILARIASIS (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mansonella ozzardi</td>
<td>Drug of choice: 24</td>
<td>See footnote 27</td>
<td></td>
</tr>
<tr>
<td>Drug of choice: 24</td>
<td>Albendazole 7</td>
<td>400 mg bid x 10d</td>
<td>400 mg bid x 10d</td>
</tr>
<tr>
<td>OR</td>
<td>Mebendazole 2</td>
<td>100 mg bid x 30d</td>
<td>100 mg bid x 30d</td>
</tr>
<tr>
<td>Mansonella perstans</td>
<td>Drug of choice: 24, 28</td>
<td>Diethylcarba-mazine*</td>
<td>150 mcg/kg once</td>
</tr>
<tr>
<td></td>
<td>Ivermectin 7</td>
<td>6 mg/kg/d x 14d</td>
<td>6 mg/kg/d x 14d</td>
</tr>
<tr>
<td>* Availability problems. See table on p. 190.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical Pulmonary Eosinophilia (TPE)</td>
<td>Drug of choice:</td>
<td>6 mg/kg/d in 3 doses x 12-21d</td>
<td>6 mg/kg/d in 3 doses x 12-21d</td>
</tr>
<tr>
<td></td>
<td>Diethylcarba-mazine*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onchocerca volvulus</td>
<td>Drug of choice:</td>
<td>150 mcg/kg once, repeated every 6-12mos until asymptomatic</td>
<td>150 mcg/kg once, repeated every 6-12mos until asymptomatic</td>
</tr>
<tr>
<td>(River blindness)</td>
<td>Ivermectin 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FLUKE, hermaphroditic, infection

<table>
<thead>
<tr>
<th>Drug of choice:</th>
<th>75 mg/kg/d in 3 doses x 1d</th>
<th>75 mg/kg/d in 3 doses x 1d</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Availability problems. See table on p. 190.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opisthorchis viverrini (Southeast Asian liver fluke)</td>
<td>Drug of choice:</td>
<td>75 mg/kg/d in 3 doses x 1d</td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>Praziquantel 7</td>
<td>10 mg/kg x 7d</td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>Praziquantel 7</td>
<td>75 mg/kg/d in 3 doses x 1d</td>
</tr>
<tr>
<td>Nanophyetus salmincola</td>
<td>Drug of choice: 35</td>
<td>75 mg/kg/d in 3 doses x 1d</td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>Praziquantel 7</td>
<td>10 mg/kg/d in 3 doses x 1d</td>
</tr>
<tr>
<td>Paragonimus westermani (lung fluke)</td>
<td>Drug of choice:</td>
<td>75 mg/kg/d in 3 doses x 1d</td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>Praziquantel 7</td>
<td>10 mg/kg/d in 3 doses x 1d</td>
</tr>
<tr>
<td>GIARDIASIS (Giardia duodenalis)</td>
<td>Drug of choice:</td>
<td>250 mg tid x 5d</td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>Metronidazole 7</td>
<td>500 mg bid x 3d</td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>Nitazoxanide 4</td>
<td>200 mg tid x 3d</td>
</tr>
<tr>
<td>GNATHOSTOMIASIS (Gnathostoma spinigerum)</td>
<td>Treatment of choice:</td>
<td>400 mg bid x 21d</td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>Ivermectin 7</td>
<td>200 mcg/kg/d x 2d</td>
</tr>
<tr>
<td>GONGYLOMENIAIS (Gongylonema sp.)</td>
<td>Treatment of choice:</td>
<td>Surgical removal</td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>Surgical removal</td>
<td></td>
</tr>
</tbody>
</table>

* Availability problems. See table on p. 190.

27. Diethylcarbamazine has no effect. Ivermectin 200 mcg/kg once, has been effective.
28. Diethylcarbamazine is potentially curative due to activity against both adult worms and microfilariae. Ivermectin is only active against microfilariae. Relapse occurs and can be treated with diethylcarbamazine.
29. Annual treatment with ivermectin, 150 mcg/kg, can prevent blindness due to ocular onchocerciasis (D Mabey et al, Ophthalmology 1996; 103:1001).
30. Treatment of ivermectin alone should not be used for treatment of this disease.
31. Unlike infections with other flukes, Fasciola hepatica infections may not respond to praziquantel. Triclabendazole (Egaten - Novartis) may be safe and effective but data are limited (CS Graham et al, Clin Infect Dis 2001; 33:51). It is available from Victoria Pharmacy, Zurich, Switzerland (www.pharmaworld.com; 41-1-211-24-32) and should be given with food for better absorption. A single study has found that nitazoxanide has limited efficacy for treating fascioliasis in adults and children (L Favennec et al, Aliment Pharmacol Ther 2003; 17:265).
34. Not absorbed; may be useful for treatment of giardiasis in pregnancy.
35. M Gorgolas et al, J Travel Med 2003; 10:358. All patients should be treated with a medication regardless of whether surgery is attempted.
36. Not absorbed; may be useful for treatment of giardiasis in pregnancy.
Drugs for Parasitic Infections

INFECTION
Leishmania infection

<table>
<thead>
<tr>
<th>INFECTION</th>
<th>INFECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visceral</td>
<td>Cutaneous</td>
</tr>
<tr>
<td>Drugs of choice:</td>
<td>Drugs of choice:</td>
</tr>
<tr>
<td>Sodium stibogluconate*</td>
<td>Sodium stibogluconate*</td>
</tr>
<tr>
<td>Meglumine antimonolate*</td>
<td>Meglumine antimonolate*</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>Pentamidine</td>
</tr>
<tr>
<td>Liposomal amphotericin B</td>
<td>Paromomycin</td>
</tr>
<tr>
<td>Alternative:</td>
<td>Alternative:</td>
</tr>
<tr>
<td>Pentamidine*</td>
<td>Meglumine gluconate*</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>Meglumine</td>
<td>Paromomycin</td>
</tr>
<tr>
<td>OR</td>
<td>Meglumine antimonolate*</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>Pentamidine</td>
</tr>
<tr>
<td>Liposomal amphotericin B</td>
<td>Paromomycin</td>
</tr>
<tr>
<td>Alternative:</td>
<td>Alternative:</td>
</tr>
<tr>
<td>Pentamidine*</td>
<td>Meglumine gluconate*</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>Meglumine</td>
<td>Paromomycin</td>
</tr>
<tr>
<td>OR</td>
<td>Meglumine antimonolate*</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>Pentamidine</td>
</tr>
</tbody>
</table>

Drugs for Parasitic Infections

<table>
<thead>
<tr>
<th>INFECTION</th>
<th>DRUG</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visceral</td>
<td>Sodium stibogluconate*</td>
<td>20 mg Sb/kg/d IV or IM x 20d</td>
<td>20 mg Sb/kg/d IV or IM x 20d</td>
</tr>
<tr>
<td>OR</td>
<td>Meglumine antimonolate*</td>
<td>20 mg Sb/kg/d IV or IM x 20d</td>
<td>20 mg Sb/kg/d IV or IM x 20d</td>
</tr>
<tr>
<td>OR</td>
<td>Amphotericin B B7</td>
<td>0.5-1 mg/kg IV daily or every second day for up to 8wks</td>
<td>0.5-1 mg/kg IV daily or every second day for up to 8wks</td>
</tr>
<tr>
<td>OR</td>
<td>Liposomal amphotericin B B42</td>
<td>3 mg/kg/d IV (d 1-5) and 3 mg/kg/d d 14 and 21</td>
<td>3 mg/kg/d IV (d 1-5) and 3 mg/kg/d d 14 and 21</td>
</tr>
<tr>
<td>Alternative:</td>
<td>Pentamidine</td>
<td>4 mg/kg IV or IM daily or every second day for 15-30 doses</td>
<td>4 mg/kg IV or IM daily or every second day for 15-30 doses</td>
</tr>
<tr>
<td>OR</td>
<td>Paromomycin</td>
<td>Topically 2xd x 10-20d</td>
<td>Topically 2xd x 10-20d</td>
</tr>
<tr>
<td>OR</td>
<td>Meglumine antimonolate*</td>
<td>2-3 mg/kg IV or IM daily or every second day x 4-7 doses47</td>
<td>2-3 mg/kg IV or IM daily or every second day x 4-7 doses47</td>
</tr>
<tr>
<td>OR</td>
<td>Meglumine gluconate*</td>
<td>Topically 2xd x 10-20d</td>
<td>Topically 2xd x 10-20d</td>
</tr>
</tbody>
</table>

Drugs of choice:

- Sodium stibogluconate: 20 mg Sb/kg/d IV or IM x 28d
- Meglumine antimonolate: 0.5-1 mg/kg IV daily or every second day for up to 8wks
- Amphotericin B: 3 mg/kg/d IV (d 1-5) and 3 mg/kg/d (d 14 and 21)
- Liposomal amphotericin B: 4 mg/kg IV or IM daily or every second day for 15-30 doses
- Pentamidine: Topically 2xd x 10-20d
- Paromomycin: 2-3 mg/kg IV or IM daily or every second day x 4-7 doses
- Meglumine gluconate: Topically 2xd x 10-20d

Drugs for parasitic infections

- **Amphotericin B**: 0.5-1 mg/kg IV daily or every second day for up to 8wks
- **Meglumine antimonolate**: 0.5-1 mg/kg IV daily or every second day for up to 8wks

* Availability problems. See Table on page 190.

39. In immunocompetent patients usually a self-limited illness. Immunosuppressed patients may need higher doses, longer duration (TMP/SMX qid x 10d, followed by bid x 2wk) and long-term maintenance. In sulfonamide-sensitive patients, pyrimethamine 50-75 mg daily in divided doses (plus leucovorin 10-25 mg/d) has been effective.

40. Visceral infection is most commonly due to the Old World species L. donovani (kala-azar) and L. infantum and the New World species L. chagasi. Treatment duration may vary based on symptoms, host immune status, species and area of the world where infection was acquired.

41. May be repeated or continued; a longer duration may be needed for some patients (BL Herwaldt, Lancet 1999; 354:1191).

42. Three lipid formulations of amphotericin B have been used for treatment of visceral leishmaniasis. Largely based on clinical trials in patients infected with L. infantum, the FDA-approved liposomal amphotericin B (AmBisome) for treatment of visceral leishmaniasis (A Meyerhoff, Clin Infect Dis 1999; 28:92). Amphotericin B lipid complexes (Abelcet) and amphotericin B cholesteryl sulfate (Amphotec) have also been used with good results but are considered investigational for this condition by the FDA.

43. The FDA-approved dosage regimen for immunocompromised patients (e.g., HIV infected) is 4 mg/kg/d (d 1-5) and 4 mg/kg/d on d 10, 17, 24, 31 and 38. The relapse rate is high; maintenance therapy may be indicated, but there is no consensus as to dosage or duration.

44. For treatment of kala-azar in adults in India, oral miltefosine 100 mg/d (~2.5 mg/kg/d) for 3-4wks was 97% effective after 6 mos (TK Jha et al, N Engl J Med 1999; 341:1795; H Sangraula et al, J Assoc Physicians India 2003; 51:686). Gastrintestinal adverse effects are common, and the drug is contraindicated in pregnancy.

46. In a placebo-controlled trial in patients >12 years old, oral miltefosine was effective for the treatment of cutaneous leishmaniasis due to L.(V.) panamensis in Guatemala but not L.(V.) braziliensis in Guatemala at a dosage of about 2.5 mg/kg/d for 28d. "Motion sickness," nausea, headache and increased creatinine were the most frequent adverse effects (J Soto et al, Clin Infect Dis 2004; 38:1266). See footnote 44 regarding miltefosine availability. For treatment of L. major cutaneous lesions, a study in Saudi Arabia found oral fluconazole, 200 mg once/d x 4-7 doses, appeared to speed healing (AA Alrajhi et al, N Engl J Med 2002; 346:891).

47. At this dosage pentamidine has been effective against leishmaniasis in Colombia where the likely organism was L. (V.) panamensis (J Soto-Mancoipe et al, Clin Infect Dis 1993; 16:417; J Soto et al, Am J Trop Med Hyg 1984; 30:157); its effect against other species is not well established.

48. Topical paromomycin should be used only in geographic regions where cutaneous leishmaniasis species have low potential for mucosal spread. A formulation of 15% paromomycin/12% methylbenzethonium chloride (Lashohutin) in soft white paraffin for topical use has been reported to be partially effective in some patients against cutaneous leishmaniasis due to L. major in Israel and against L. mexicana and L. (V.) braziliensis in Guatemala, where mucosal spread is very rare (BA Arias et al, Am J Trop Med Hyg 2001; 65:466). The methylbenzethonium is irritating to the skin; lesions may worsen before they improve.

49. Mucosal infection is most commonly due to the New World species L. (V) braziliensis, L. (V) panamensis, or L. (V) guyanensis. Treatment duration may vary based on symptoms, host immune status, species and area of the world where infection was acquired.
Drugs for Parasitic Infections

<table>
<thead>
<tr>
<th>INFECTION</th>
<th>DRUG</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
</table>
| LICE infestation (*Pediculus humanus, P. capitis, Phthirus pubis*) | **Drug of choice:** 0.5% Malathion Topically
1% Permethrin Topically
Pyrethrins with piperonyl butoxide Topically
Ivermectin | Topically | Topically |
| **Alternative:** | | | |
| | | | |
| | | | |

Loa loa, see **FILARIASIS**

MALARIAS, Treatment of (Plasmodium falciparum, P. ovale, P. vivax, and P. malariae)

P. falciparum

acquired in areas of chloroquine-resistance

ORAL

Drugs of choice:

- Atovaquone/proguanil
 - 2 adult tabs bid§ or
 - 4 adult tabs once daily x 3d
- Quinine sulfate
 - 650 mg q8h x 3-7d§
- Doxycycline
 - 100 mg bid x 7d
- Tetracycline
 - 250 mg qid x 7d
- Clindamycin
 - 20 mg/kg/d in 3 doses x 7d
- Mefloquine
 - 750 mg followed 12 hrs later by
 - 500 mg
- Artesunate
 - 4 mg/kg/d x 3d
- Mefloquine§
 - 760 mg followed 12 hrs later by
 - 500 mg

OR

- Quinine sulfate plus doxycycline
 - 650 mg q8h x 3-7d§
 - 100 mg bid x 7d
- Clindamycin
 - 20 mg/kg/d in 3 doses x 7d
- Mefloquine
 - 750 mg followed 12 hrs later by
 - 500 mg
- Artesunate
 - 4 mg/kg/d x 3d
- Mefloquine§
 - 760 mg followed 12 hrs later by
 - 500 mg

Alternatives:

- Atovaquone/proguanil
 - Adult tablets (Malarone; 250 mg atovaquone/100 mg proguanil) and pediatric tablets (Malarone Pediatric; 62.5 mg atovaquone/25 mg proguanil). To enhance absorption, it should be taken with food or a milk drink. Atovaquone/proguanil should not be given to pregnant women or patients with severe renal impairment (creatinine clearance <30 mL/min). There have been several isolated reports of resistance in P. falciparum in Africa (E Schwartz et al, Clin Infect Dis 2003; 37:450; A Farnert et al, BMJ 2003; 326:628).

- Mefloquine
 - 760 mg followed 12 hrs later by
 - 500 mg

§ Availability problems. See table on page 190.

50. For infestation of eyelashes with *P. pubic lice*, use petrolatum; TMP/SMX has also been used (TL Meinking and D Taplin, Curr Probl Dermatol 1996; 24:157). For pubic lice, treat with 5% permethrin or ivermectin as for scabies (see page 187). TMP/SMX has also been effective together with permethrin for head lice (RB Hipolito et al, Pediatrics 2001; 107:630).

52. A second application is recommended one week later to kill hatching progeny. Some lice are resistant to pyrethrins and permethrin (TL Meinking et al, Arch Dermatol 2002; 158:239).

53. Ivermectin is effective against adult lice but has no effect on nits (RJ Jones and JC English III, Clin Infect Dis 2003; 36:1355).

54. Chloroquine-resistant *P. falciparum* occurs in all malarious areas except Central America west of the Panama Canal Zone, Mexico, Haiti, the Dominican Republic, and most of the Middle East (chloroquine resistance has been reported in Yemen, Oman, Saudi Arabia and Iran). For treatment of multi-drug-resistant *P. falciparum* in Southeast Asia, especially Thailand, where resistance to mefloquine is frequent, atovaquone/proguanil, artesunate plus mefloquine or artesunate plus mefloquine may be used (C Luxemburger et al, Trans R Soc Trop Med Hyg 1994; 88:213; J Karbwang et al, Trans R Soc Trop Med Hyg 1995; 89:236).

55. Uncomplicated or mild malaria may be treated with oral drugs.

56. Atovaquone plus proguanil is available as a fixed-dose combination tablet: adult tablets (Malarone; 250 mg atovaquone/100 mg proguanil) and pediatric tablets (Malarone Pediatric; 62.5 mg atovaquone/25 mg proguanil). To enhance absorption, it should be taken with food or a milk drink. Atovaquone/proguanil should not be given to pregnant women or patients with severe renal impairment (creatinine clearance <30 mL/min). There have been several isolated reports of resistance in *P. falciparum* in Africa (E Schwartz et al, Clin Infect Dis 2003; 37:450; A Farnert et al, BMJ 2003; 326:628).

57. In Southeast Asia, relative resistance to quinine has increased and treatment should be continued for 7d.

58. Although approved for once daily dosing, Medical Letter consultants usually divide the dose in two to decrease nausea and vomiting.

59. For use in pregnancy.

61. At this dosage, adverse effects including nausea, vomiting, diarrhea, dizziness, disturbed sense of balance, toxic psychosis and seizures can occur. Mefloquine should not be used for treatment of malaria in pregnancy unless there is no other treatment option because of increased risk for stillbirth (F Nosten et al, Clin Infect Dis 1999; 28:808). It should be avoided for treatment of malaria in persons with active depression or with a history of psychosis or seizures and should be used with caution in persons with psychiatric illness. Mefloquine can be given to patients taking b-blockers if they do not have an underlying arrhythmia; it should not be used in patients with conduction abnormalities. Mefloquine should not be given together with quinine, quinidine or halofantrine, and caution is required in using quinine, quinidine or halofantrine to treat patients with malaria who have taken mefloquine for prophylaxis. Resistance to mefloquine has been reported in some areas, such as the Thailand-Myanmar and Thailand-Cambodia borders and in the Amazon basin, where 25 mg/kg should be used. In the US, a 250-mg tablet of mefloquine contains 228 mg mefloquine base. Outside the US, each 275-mg tablet contains 250 mg base.

MALARIA, Treatment of (continued)

P. vivax

<table>
<thead>
<tr>
<th>Drug of choice:</th>
<th>Quinine sulfate plus doxycycline¹⁴</th>
<th>650 mg q8h x 3-7d⁶⁷</th>
<th>30 mg/kg/d in 3 doses x 3-7d⁶⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>Mefloquine⁶¹</td>
<td>100 mg bid x 7d</td>
<td>4 mg/kg/d in 2 doses x 7d</td>
</tr>
<tr>
<td>Alternatives:</td>
<td></td>
<td>750 mg followed 12 hrs later by 500 mg</td>
<td>15 mg/kg followed 12 hrs later by 10 mg/kg</td>
</tr>
<tr>
<td>All Plasmodium except Chloroquine-resistant P. falciparum and Chloroquine-resistant P. vivax</td>
<td></td>
<td>25 mg base/kg in 3 doses over 48 hrs</td>
<td>25 mg base/kg in 3 doses over 48 hrs</td>
</tr>
<tr>
<td>ORAL</td>
<td>Chloroquine plus primaquine⁶⁴</td>
<td>30 mg base daily x 14d</td>
<td>0.6 mg/kg/d x 14d</td>
</tr>
</tbody>
</table>

Prevention of relapses: P. vivax and P. ovale only

| Drug of choice: | Primaquine phosphate⁶⁴ | 1 g (600 mg base), then 500 mg (300 mg base) 6 hrs later, then 500 mg (300 mg base) at 24 and 48 hrs | 10 mg base/kg (max. 600 mg base), then 5 mg base/kg 6 hrs later, then 5 mg base/kg at 24 and 48 hrs |

Prevention of P. falciparum and P. vivax

<table>
<thead>
<tr>
<th>Drug of choice:</th>
<th>Chloroquine phosphate⁶⁶</th>
<th>10 mg/kg loading dose (max. 600 mg) in normal saline over 1-2 hrs, followed by continuous infusion of 0.02 mg/kg/min until PO therapy can be started</th>
<th>10 mg/kg loading dose (max. 600 mg) in normal saline over 1-2 hrs, followed by continuous infusion of 0.02 mg/kg/min until PO therapy can be started</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARENTERAL</td>
<td>Quinine gluconate⁶⁷</td>
<td>20 mg/kg loading dose in 5% dextrose over 4 hrs, followed by 10 mg/kg over 2-4 hrs q8h (max. 1800 mg/d) until PO therapy can be started</td>
<td>20 mg/kg loading dose in 5% dextrose over 4 hrs, followed by 10 mg/kg over 2-4 hrs q8h (max. 1800 mg/d) until PO therapy can be started</td>
</tr>
<tr>
<td>Alternative:</td>
<td>Artemether⁶⁸</td>
<td>3.2 mg/kg IM, then 1.6 mg/kg daily x 5-7d</td>
<td>3.2 mg/kg IM, then 1.6 mg/kg daily x 5-7d</td>
</tr>
</tbody>
</table>

MALARIA, Prevention of

Chloroquine-sensitive areas

| Drug of choice: | Chloroquine phosphate⁶⁵,⁷¹ | 500 mg (300 mg base), once/wk⁷² | 5 mg/kg base once/wk, up to adult dose of 300 mg base⁷² |

* Availability problems. See table on page 190.
63. P. vivax with decreased susceptibility to chloroquine is a significant problem in Papua New Guinea and Indonesia. There are also a few reports of resistance from Myanmar, India, the Solomon Islands, Vanuatu, Guyana, Brazil, Colombia and Peru.
64. Primaquine phosphate can cause hemolytic anemia, especially in patients whose red cells are deficient in glucose-6-phosphate dehydrogenase. This deficiency is most common in African, Asian and Mediterranean peoples. Patients should be screened for G-6-PD deficiency before treatment. Primaquine should not be used during pregnancy.
65. If chloroquine phosphate is not available, hydroxychloroquine sulfate is as effective; 400 mg of hydroxychloroquine sulfate is equivalent to 500 mg of chloroquine phosphate.
66. Exchange transfusion has been helpful for some patients with high-density (>10%) parasitemia, altered mental status, pulmonary edema or renal complications (KD Miller et al, N Engl J Med 1989; 321:31-35).
67. Continuous EKG, blood pressure and glucose monitoring are recommended, especially in pregnant women and young children. For problems with quinidine availability, call the manufacturer (Es Lily, 800-545-6370) or the CDC Malaria Hotline (770-488-7788). Quinidine may have greater antimalarial activity than quinine. The loading dose should be decreased or omitted in those patients who have received quinine or mefloquine. If more than 48 hours of parenteral treatment is required, the quinine or quinidine dose should be reduced by 30-50%.
69. No drug regimen guarantees protection against malaria. If fever develops within a year (particularly within the first two months) after travel to malaria-areas, travelers should be advised to seek medical attention. Insect repellents, insecticide-impregnated bed nets and proper clothing are important adjuncts for malaria prophylaxis (Med Lett Drugs Ther 2003; 45:41). Malaria in pregnancy is particularly serious for both mother and fetus; therefore, prophylaxis is indicated if exposure can not be avoided.
70. In pregnancy, chloroquine prophylaxis has been used extensively and safely.
71. For prevention of attack after departure from areas where P. vivax and P. ovale are endemic, which includes almost all areas where malaria is found (except Haiti), some experts propose an additional primaquine phosphate 50 mg base/d or, for children, 0.6 mg base/kg/d during the last 2-4 weeks of prophylaxis. Others prefer to avoid the toxicity of primaquine and rely on surveillance to detect cases when they occur, particularly when exposure was limited or doubtful. See also footnote 64.
72. Beginning 1-2wks before travel and continuing weekly for the duration of stay and for 4wks after leaving. In one study of malaria prophylaxis, atovaquone/proguanil was better tolerated than mefloquine in nonimmune travelers (O Oertebosch et al, Clin Infect Dis 2001; 33:1015).
Drugs for Parasitic Infections

MALARIA, Prevention of (continued)

<table>
<thead>
<tr>
<th>INFECTION</th>
<th>DRUG</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroquine-resistant areas</td>
<td>Atovaquone/proguanil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>1 adult tab/d<sup>73</sup></td>
<td>11-20kg: 1 peds tab/d<sup>56,73</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>20kg: 1 tab once/wk<sup>72</sup></td>
<td>21-30kg: 2 peds tabs/d<sup>6,73</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>40kg: 1 adult tab/d<sup>6,73</sup></td>
<td>>40kg: 4 adult tabs once/d x 3d</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Mefloquine<sup>6,7,14</sup></td>
<td>510kg: 14 tab once/wk<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 mg once/wk<sup>72</sup></td>
<td>11-20kg: ½ tab once/wk<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>20kg: ½ tab once/wk<sup>72</sup></td>
<td>21-30kg: ½ tab once/wk<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>40kg: ½ tab once/wk<sup>72</sup></td>
<td>31-45kg: ¼ tab once/wk<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td>Alternatives:</td>
<td></td>
<td>>45kg: 1 tab once/wk<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Doxycycline<sup>7,71</sup></td>
<td>2 mg/kg/d, up to 100 mg/d<sup>75</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primaqine<sup>7,56</sup></td>
<td>0.6 mg/kg base daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroquine phosphate</td>
<td>5 mg/kg base once/wk, up to 300 mg base<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td>plus proguanil<sup>77</sup></td>
<td>5mg/kg base once/wk, up to 300 mg base<sup>72</sup></td>
<td><2yrs: 50 mg once/d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 mg once/d</td>
<td>2-6yrs: 100 mg once/d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>7-10yrs: 150 mg once/d</td>
<td></td>
</tr>
<tr>
<td>MALARIA, Self-Presumptive Treatment<sup>76</sup></td>
<td>Atovaquone/proguanil<sup>7,56</sup></td>
<td><5kg: not indicated</td>
<td></td>
</tr>
<tr>
<td>Drug of Choice:</td>
<td>4 adult tabs daily x 3d</td>
<td>5-8kg: 2 peds tabs once/d x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-10kg: 3 peds tabs once/d x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11-20kg: 1 adult tab once/d x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td>Mefloquine<sup>6,73,74</sup></td>
<td>31-40kg: 2 adult tabs once/d x 3d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mg base daily<sup>76</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 mg (300 mg base) once/wk<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>plus proguanil<sup>77</sup></td>
<td>>40kg: 4 adult tabs once/d x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 mg once/d</td>
<td>>40kg: 4 adult tabs once/d x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>2yrs: 50 mg once/d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-6yrs: 100 mg once/d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>7-10yrs: 200 mg once/d</td>
<td></td>
</tr>
</tbody>
</table>

MALARIA, Prevention of

<table>
<thead>
<tr>
<th>INFECTION</th>
<th>DRUG</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroquine-resistant areas</td>
<td>Atovaquone/proguanil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>1 adult tab/d<sup>73</sup></td>
<td>11-20kg: 1 peds tab/d<sup>56,73</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>20kg: 1 tab once/wk<sup>72</sup></td>
<td>21-30kg: 2 peds tabs/d<sup>6,73</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>40kg: 1 adult tab/d<sup>6,73</sup></td>
<td>>40kg: 4 adult tabs once/d x 3d</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Mefloquine<sup>6,7,14</sup></td>
<td>510kg: 14 tab once/wk<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 mg once/wk<sup>72</sup></td>
<td>11-20kg: ½ tab once/wk<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>20kg: ½ tab once/wk<sup>72</sup></td>
<td>21-30kg: ½ tab once/wk<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>40kg: ½ tab once/wk<sup>72</sup></td>
<td>31-45kg: ¼ tab once/wk<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td>Alternatives:</td>
<td></td>
<td>>45kg: 1 tab once/wk<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Doxycycline<sup>7,71</sup></td>
<td>2 mg/kg/d, up to 100 mg/d<sup>75</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primaqine<sup>7,56</sup></td>
<td>0.6 mg/kg base daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroquine phosphate</td>
<td>5 mg/kg base once/wk, up to 300 mg base<sup>72</sup></td>
<td></td>
</tr>
<tr>
<td>plus proguanil<sup>77</sup></td>
<td>5mg/kg base once/wk, up to 300 mg base<sup>72</sup></td>
<td><2yrs: 50 mg once/d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 mg once/d</td>
<td>2-6yrs: 100 mg once/d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>7-10yrs: 150 mg once/d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10yrs: 200 mg once/d</td>
<td></td>
</tr>
</tbody>
</table>

MICROSPORIDIOSIS

<table>
<thead>
<tr>
<th>INFECTION</th>
<th>DRUG</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocular (Encephalitozoon hellem, Encephalitozoon cuniculi, Vitelliforme cornea [Nosema corneum])</td>
<td>Fumagillin*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>400 mg bid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plus fumagillin<sup>79</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intestinal (Enterocytozoon bieneusi, Encephalitozoon [Septata] intestinalis)</td>
<td>Fumagillin*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>60 mg/d PO x 14d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. bieneusi<sup>80</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>400 mg bid x 21d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. intestinalis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disseminated (E. hellem, E. cuniculi, E. intestinalis, Plasmodiophora sp., Trachipleistophora sp. and Brachiola vesicularum)</td>
<td>Albendazole<sup>7</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>400 mg bid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mites, see SCABIES</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MONILIFORMIS

<table>
<thead>
<tr>
<th>INFECTION</th>
<th>DRUG</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>moniliformis infection</td>
<td>Pyrantel</td>
<td>11 mg/kg once, repeat twice, 2wks apart</td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td>pamoate<sup>2</sup></td>
<td>11 mg/kg once, repeat twice, 2wks apart</td>
<td></td>
</tr>
</tbody>
</table>

* Availability problems. See table on page 190.
74. Mefloquine has not been approved for use during pregnancy. However, it has been reported to be safe for prophylactic use during the second or third trimester of pregnancy and possibly during early pregnancy as well (CDC Health Information for International Travel, 2003-2004, page 111; BL Smoak et al, J Infect Dis 1997; 176:831). For pediatric doses <½ tablet, it is advisable to have a pharmacist crush the tablet, estimate doses by weighing, and package them in gelatin capsules. There is no data for use in children <5 kg, but based on dosages in other weight groups, a dose of 5 mg/kg can be used. Mefloquine is not recommended for patients with cardiac conduction abnormalities, and patients with a history of depression, seizures, psychosis or psychiatric disorders should avoid mefloquine prophylaxis. Resistance to mefloquine has been reported in some areas, such as the Thailand-Myanmar and Thailand-Cambodia borders; in these areas, atovaquone/proguanil or doxycycline should be used for prophylaxis.
75. Beginning 1-2d before travel and continuing for the duration of stay and for 4-6w after leaving. Use of tetraacyclines is contraindicated in pregnancy and in children <8 years old. Doxycycline can cause gastrointestinal disturbances, vaginal moniliasis and photosensitivity reactions.
76. Studies have shown that daily primaquine beginning 1d before departure and continued until 5-7d after leaving the malaria area provides effective prophylaxis against chloroquine-resistant P. falciparum (JK Baird et al, Clin Infect Dis 2003; 37:1659). Some studies have shown less efficacy against P. inerm Sinusia: Nausea and abdominal pain can be diminished by taking with food.
77. Proguanil (Paludrine – Wyeth Ayerst, Canada; AstaZeneca, United Kingdom), which is not available alone in the US but is widely available in Canada and Europe, is recommended mainly for use in Africa south of the Sahara. Prophylaxis is recommended during exposure and for 4wks afterwards. Proguanil has been used in pregnancy without evidence of toxicity (PA Phillips-Howard and D Wood, Drug Saf 1996; 14:131).
78. A traveler can be given a course of atovaquone/proguanil, mefloquine or quinine plus doxycycline for presumptive self-treatment of febrile illness. The drug given for self-treatment should be different from that used for prophylaxis. This approach should be used only in very rare circumstances when a traveler can not promptly get to medical care.
79. Ocular lesions due to E. hellem in HIV-infected patients have responded to fumagillin eyedrops prepared from Fumidil-B, (bicyclohexyl ammonium fumagillin) (footnote 1). For lesions due to V. corneae, topical therapy is generally not effective and keratoplasty may be required (RM Davis et al, Ophthalmology 1990; 97:953).
80. Oral fumagillin (Sanofi Recherche, Gentilly, France) has been effective in treating E. bieneusi (J-M Molina et al, N Engl J Med 2002; 346:1963), but has been associated with thrombocytopenia. Highly active antiretroviral therapy (HAART) may lead to microbiologic and clinical response in HIV-infected patients with microsporidial diarrhea (CA Benson et al, Treating opportunistic infections among HIV-infected adults and adolescents. Recommendations from CDC, NIH and HIV Medicine Association/IDSA. MMWR Recomm Rep 2004; 53:1). Octreotide (Sandostatin) has provided symptomatic relief in some patients with large-volume diarrhea.
Drugs for Parasitic Infections

<table>
<thead>
<tr>
<th>Infection</th>
<th>Drug</th>
<th>Adult Dosage</th>
<th>Pediatric Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naegleria species, see AMEBIC MENINGOENCEPHALITIS, PRIMARY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Necator americanus, see HOOKWORM infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oesophagostomum bifurcum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice: See footnote 82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onchocerca volvulus, see FILARIASIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opisthorchis viverrini, see FLUKE infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paragonimus westermani, see FLUKE infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediculus capitis, humanus, Phthirus pubis, see LICE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinworm, see ENTEROBIBUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumocystis jiroveci (formerly carinii) pneumonia (PCP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice: Trimethoprim-sulfamethoxazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternatives: Primaquine<sup>7,64</sup> plus clindamycin<sup>7</sup> OR Trimethoprim<sup>7</sup> plus dapsone<sup>7</sup> OR Atovaquone<sup>7</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-34 mg/kg IV daily x 14-21 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>
3-4 mg/kg IV daily x 14-21 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750 mg bid x 21 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternatives: Primaquine 7,64 30 mg base PO daily x 21 d
plus clindamycin 7 600 mg IV q6h x 21 d, or 300-450 mg PO q6h x 21 d
OR Trimethoprim 7 3 mg/kg tid x 21 d
plus dapsone 7 100 mg daily x 21 d
OR Atovaquone 7 750 mg bid x 21 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>
3-4 mg/kg IV daily x 14-21 d
1-3mos: 30 mg/kg/d
4-24mos: 45 mg/kg/d
24mos: 30 mg/d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR Pentamidine 3-4 mg/kg IV daily x 14-21 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR Atovaquone 7 1500 mg daily 1-3mos: 30 mg/kg/d
4-24mos: 45 mg/kg/d
>24mos: 30 mg/kg/d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary and secondary prophylaxis<sup>84</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice: Trimethoprim-sulfamethoxazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternatives: Dapsone 7 50 mg bid, or 100 mg daily 2 mg/kg/d (max. 100 mg) or 4 mg/kg (max. 200 mg) each wk
OR Dapsone<sup>7</sup> plus pyrimethamine<sup>86</sup> OR Pentamidine aerosol 300 mg monthly via Respirgard II nebulizer
OR Atovaquone 7 1500 mg daily 1-3mos: 30 mg/kg/d 4-24mos: 45 mg/kg/d >24mos: 30 mg/kg/d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roundworm, see ASCARIASIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sappinia Diploidea, See AMEBIC MENINGOENCEPHALITIS, PRIMARY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCABIES (Sarcoptes scabiei)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice: 5% Permethrin<sup>7,89</sup> 10% Crotamiton<sup>7,89</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternatives: 200 mcg/kg once<sup>87</sup> 200 mcg/kg once<sup>87</sup></td>
<td>200 mcg/kg once<sup>87</sup> Topically once/daily x 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHISTOSOMIASIS (Bilharziasis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistosoma haematobium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice: Praziquantel 40 mg/kg/d in 2 doses x 1 d 40 mg/kg/d in 2 doses x 1 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice: Praziquantel 60 mg/kg/d in 3 doses x 1 d 60 mg/kg/d in 3 doses x 1 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative: Oxamniquine<sup>90</sup> 15 mg/kg once<sup>91</sup> 15 mg/kg once<sup>91</sup> 20 mg/kg/d in 2 doses x 1 d<sup>91</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistosoma mansoni</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice: Praziquantel 40 mg/kg/d in 2 doses x 1 d 40 mg/kg/d in 2 doses x 1 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice: Praziquantel 60 mg/kg/d in 3 doses x 1 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative: Oxamniquine<sup>90</sup> 15 mg/kg once<sup>91</sup> 20 mg/kg/d in 2 doses x 1 d<sup>91</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistosoma mekongi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice: Praziquantel 60 mg/kg/d in 3 doses x 1 d 60 mg/kg/d in 3 doses x 1 d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Availability problems. See table on page 190.
82. Albendazole or pyrantel pamoate may be effective (JB Ziem et al, Ann Trop Med Parasitol 2004; 98:385).
83. Pneumocystis has been reclassified as a fungus. In severe disease with room air PO₂ < 70 mmHg or Aa gradient > 35 mmHg, prednisone should also be used (S Gagnon et al, N Engl J Med 1990; 323:1444; E Caumes et al, Clin Infect Dis 1994; 18:319).
84. Primary/secondary prophylaxis in patients with HIV can be discontinued after CD4 count increases to >200 x 10⁶/L for >3mos.
85. An alternative trimethoprim/sulfamethoxazole regimen is one DS tab 3x/wk. Weekly therapy with sulfadoxine 500 mg/pyrimethamine 25 mg was effective PCP prophylaxis in liver transplant patients (J Torre-Cisneros et al, Clin Infect Dis 1999; 29:771).
86. Plus leucovorin 25 mg with each dose of pyrimethamine.
87. In some cases, treatment may need to be repeated in 10-14 days.
88. Lindane (γ-benzene hexachloride; Kwell) should be reserved as a second-line agent. The FDA has recommended it should not be used for immunocompromised patients, young children, the elderly, and patients <50 kg.
89. Ivermectin, either alone or in combination with a topical scabicide, is the drug of choice for crusted scabies in immunocompromised patients (P del Giudice, Curr Opin Infect Dis 2004; 16:123). The safety of oral ivermectin in pregnancy and young children has not been established.
90. Oxamniquine has been effective in some areas in which praziquantel is less effective (PF Stilma et al, J Infect Dis 1997; 176:304). Chlormequin is contraindicated in pregnancy.
91. In East Africa, the dose should be increased to 30 mg/kg, and in Egypt and South Africa to 30 mg/kg/d x 2d. Some experts recommend 40-60 mg/kg over 2-3d in all of Africa (KC Shokar, Drugs 1991; 42:379).
Drugs for Parasitic Infections

<table>
<thead>
<tr>
<th>INFECTION</th>
<th>DRUG OF CHOICE</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleeping sickness, see TRYPANOSOMIASIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRONGYLOIDIASIS (Strongyloides stercoralis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthelmintic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivermectin</td>
<td>200 mcg/kg/d x 2d</td>
<td>200 mcg/kg/d x 2d</td>
<td></td>
</tr>
<tr>
<td>Albendazole7</td>
<td>400 mg bid x 7d</td>
<td>400 mg bid x 7d</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>50 mg/kg/d x 2 doses</td>
<td>50 mg/kg/d x 2 doses</td>
<td></td>
</tr>
<tr>
<td>(max 3g/d)23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAPEWORM infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Adult (intestinal stage)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diphyllobothrium latum (fish), Taenia saginata (beef), Taenia solium (pork), Dipylidium caninum (dog)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternatives:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metronidazole</td>
<td>2-4 g/d x 7d</td>
<td>2-4 g/d x 7d</td>
<td></td>
</tr>
<tr>
<td>+ Leucovorin 10-25 mg with each dose of metronidazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hymenolepis nana (dwarf tapeworm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niclosamide*</td>
<td>2 g once</td>
<td>50 mg/kg/once</td>
<td></td>
</tr>
<tr>
<td>Hymenolepis nana (dwarf tapeworm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitzoxanide4,7</td>
<td>25 mg/kg once</td>
<td>25 mg/kg once</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>500 mg x 3d24</td>
<td>1-3yrs; 100 mg bid x 3d24</td>
<td></td>
</tr>
<tr>
<td>(max 3d)24</td>
<td></td>
<td>4-11yrs; 200 mg bid x 3d24</td>
<td></td>
</tr>
<tr>
<td>— Larval (tissue stage)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinococcus granulosus (hydatid cyst)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albendazole7</td>
<td>400 mg bid x 1-6mos</td>
<td>15 mg/kg/d (max. 800 mg) x 1-6mos</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>See footnote 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinococcus multilocularis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albendazole7</td>
<td>400 mg bid x 8-30d; can be repeated as necessary</td>
<td>15 mg/kg/d (max. 800 mg) x 2 doses x 8-30d; can be repeated as necessary</td>
<td>50-100 mg/kg/d in 3 doses x 30d</td>
</tr>
<tr>
<td>OR</td>
<td>See footnote 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxocariasis, see VISCERAL LARVA MIGRANS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXOPLASMOsis (Toxoplasma gondii)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drugs of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrimethamine</td>
<td>25-100 mg/d x 3-4wks</td>
<td>2 mg/kg/d x 3d, then 1 mg/kg/d (max. 25 mg/d) x 4wks102</td>
<td>100-200 mg/kg/d x 3-4wks</td>
</tr>
<tr>
<td>sulfadiazine</td>
<td>1-1.5 g qid x 3-4wks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRICHINELLOSIS (Trichinella spiralis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drugs of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steroids for severe symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mebendazole7</td>
<td>200-400 mg tid x 3d, then 400-500 mg tid x 10d</td>
<td>200-400 mg tid x 3d, then 400-500 mg tid x 10d</td>
<td>400 mg bid x 8-14d</td>
</tr>
<tr>
<td>Alternative:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albendazole7</td>
<td>400 mg bid x 8-14d</td>
<td>400 mg bid x 8-14d</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Metronidazole</td>
<td>2 g once or 500 mg bid x 7d</td>
<td>15 mg/kg/d orally in 3 doses x 7d</td>
</tr>
<tr>
<td>TRICHOMONIASIS (Trichomonas vaginalis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug of choice:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>2 g once</td>
<td>50 mg/kg/once</td>
<td></td>
</tr>
</tbody>
</table>

* Availability problems. See table on page 190.

92. In immunocompromised patients or disseminated disease, it may be necessary to prolong or repeat therapy, or to use other agents. Veterinary parenteral and enema formulations of ivermectin have been used in severely ill patients unable to take oral medications (PL Chiodo et al, Lancet 2000; 355:43; J Oreni et al, Clin Infect Dis 2003; 37:152; PE Tarr Am J Trop Med Hyg 2003; 88:453).

93. This dosage is likely to be toxic and may have to be decreased. JD Juan et al, Trans R Soc Trop Med Hyg 2002; 96:193.

94. Patients may benefit from surgical resection or percutaneous drainage of cysts. Praziquantel is useful preoperatively or in case of spillage of cyst contents during surgery. Pericystic aspiration-injection-reaspiration (PAIR) with ultrasound guidance plus albendazole therapy has been effective for management of hepatic hydatid cyst disease (RA Smego, Jr., et al, Clin Infect Dis 2003; 37:1073).

95. Surgical excision is the only reliable means of cure. Reports have suggested that in nonresectable cases use of albendazole or mebendazole can stabilize and sometimes cure infection (P Craig, Curr Open Infect Dis 2003; 16:437).

96. Initial therapy for patients with inflamed parenchymal cysticercosis should focus on symptomatic treatment with anti-seizure medication. Treatment of parenchymal cysticerci with albendazole or praziquantel is controversial (JM Maguire, N Engl J Med 2004; 350:215). Patients with live parenchymal cysts who have seizures should be treated with albendazole together with steroids (6 mg dexamethasone or 40-40 mg prednisone daily) and an anti-seizure medication (HH Garcia et al, N Engl J Med 2004; 350:249). Patients with subarachnoid cysts or giant cysts in the fissures should be treated for at least 30d (LV Praio et al, N Engl J Med 2001; 345:879). Surgical intervention or CSF diversion is indicated for obstructive hydrocephalus; prednisone 40 mg/d may be given with surgery. An herniotomy, vasculitis or cerebral edema is treated with prednisone 60 mg/d or dexamethasone 4-4.6 mg/d together with albendazole or praziquantel (AC White, Jr., Annu Rev Med 2000; 51:187). Any cysticercoidal drug may cause irreparable damage when used to treat ocular or spinal cysts, even when cortico- steroids are used. An ophthalmic exam should always precede treatment to rule out intracocular cysts. In ocular toxoplasmosis with macular involvement, corticosteroids are recommended in addition to antiparasitic therapy for an anti-inflammatory effect. In untreated patients with severe retinal involvement, especially involving the macula, long-term treatment with corticosteroids is recommended to prevent or reduce the risk of retinal scarring. Corticosteroids should be used for at least 3 months in addition to antiparasitic therapy and for 3-6 months with concurrent use of immunosuppressive agents. Women who develop toxoplasmosis during the first trimester of pregnancy can be treated with spiramycin (3-4 g/d). At the first trimester, if there is no documented transmission to the fetus, spiramycin can be continued until term. If transmission has occurred in utero, therapy with pyrimethamine and sulfadiazine should be started (JS Montoya and O Liesenfeld, Lancet 2004; 363:1895). Praziquantel is a potential teratogen and should be used only after the first trimester.

91. Plus leucovorin 10-25 mg with each dose of pyrimethamine.

90. Pyrimethamine should be continued until term. If transmission has occurred in utero, therapy with pyrimethamine and sulfadiazine should be started (JS Montoya and O Liesenfeld, Lancet 2004; 363:1895). Praziquantel is a potential teratogen and should be used only after the first trimester.

91. Pyrimethamine should be started (JG Montoya and O Liesenfeld, Lancet 2004; 363:1965). Pyrimethamine is a potential teratogen and should be used only after the first trimester.

92. Women who develop toxoplasmosis during the first trimester of pregnancy can be treated with spiramycin (3-4 g/d). At the first trimester, if there is no documented transmission to the fetus, spiramycin can be continued until term. If transmission has occurred in utero, therapy with pyrimethamine and sulfadiazine should be started (JS Montoya and O Liesenfeld, Lancet 2004; 363:1895). Praziquantel is a potential teratogen and should be used only after the first trimester.

93. Pyrimethamine should be continued until term. If transmission has occurred in utero, therapy with pyrimethamine and sulfadiazine should be started (JS Montoya and O Liesenfeld, Lancet 2004; 363:1965). Pyrimethamine is a potential teratogen and should be used only after the first trimester.
Drugs for Parasitic Infections

<table>
<thead>
<tr>
<th>INFECTION</th>
<th>DRUG</th>
<th>ADULT DOSAGE</th>
<th>PEDIATRIC DOSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRICHOSTRONGYLYUS infection</td>
<td>Drug of choice:</td>
<td>Pyrantel pamoate<sup>7</sup></td>
<td>11 mg/kg base once (max. 1 g)</td>
</tr>
<tr>
<td>Alternative:</td>
<td></td>
<td>Mebendazole<sup>7</sup></td>
<td>100 mg bid x 3d</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>Albendazole<sup>7</sup></td>
<td>400 mg once</td>
</tr>
<tr>
<td>TRICHURIASIS<sup>7</sup> (Trichuris trichiura, whipworm)</td>
<td>Drug of choice:</td>
<td>Mebendazole</td>
<td>100 mg bid x 3d or 500 mg once</td>
</tr>
<tr>
<td>Alternative:</td>
<td></td>
<td>Albendazole<sup>7</sup></td>
<td>400 mg x 3d</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>Ivermectin<sup>7</sup></td>
<td>200 mcg/kg daily x 3d</td>
</tr>
<tr>
<td>TRYPANOSOMIASIS<sup>104</sup></td>
<td>T. cruzi (American trypanosomiasis, Chagas' disease)</td>
<td>Drug of choice:</td>
<td>Benznidazole*</td>
</tr>
<tr>
<td>OR</td>
<td>Nifurtimox<sup>105</sup></td>
<td>8-10 mg/kg/d in 3-4 doses x 90-120d</td>
<td>1-10yrs: 15-20 mg/kg/d in 4 doses x 90d</td>
</tr>
<tr>
<td>T. brucei gambiense (West African trypanosomiasis, sleeping sickness)</td>
<td>Drug of choice:</td>
<td>Pentamidine isethionate<sup>7</sup></td>
<td>4 mg/kg/d IM x 10d</td>
</tr>
<tr>
<td>Alternative:</td>
<td></td>
<td>Suramin*</td>
<td>100-200 mg (test dose) IV, then 1 g IV on days 1,3,7,14 and 21</td>
</tr>
<tr>
<td>Late disease with CNS involvement</td>
<td>Drug of choice:</td>
<td>Melarsoprol<sup>107</sup></td>
<td>2.2 mg/kg/d x 10d</td>
</tr>
<tr>
<td>OR</td>
<td>Eflornithine<sup>108</sup></td>
<td>400 mg/kg/d in 4 doses x 14d</td>
<td>400 mg/kg/d in 4 doses x 14d</td>
</tr>
<tr>
<td>T. b. rhodesiense (East African trypanosomiasis, sleeping sickness)</td>
<td>Drug of choice:</td>
<td>Suramin*</td>
<td>100-200 mg (test dose) IV, then 1 g IV on days 1,3,7,14 and 21</td>
</tr>
<tr>
<td>Late disease with CNS involvement</td>
<td>Drug of choice:</td>
<td>Melarsoprol<sup>107</sup></td>
<td>2-3.6 mg/kg/d x 3d; after 7d 3.6 mg/kg/d x 3d; repeat again after 7d</td>
</tr>
<tr>
<td>VISCERAL LARVA MIGRANS<sup>109</sup> (Toxocariasis)</td>
<td>Drug of choice:</td>
<td>Albendazole<sup>7</sup></td>
<td>400 mg bid x 5d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mebendazole<sup>7</sup></td>
<td>100-200 mg bid x 5d</td>
</tr>
</tbody>
</table>

* Availability problems. See table on page 190.
105. The addition of gamma interferon to nifurtimox for 20d in experimental animals and in a limited number of patients appears to shorten the acute phase of Chagas' disease (RE McCabe et al, J Infect Dis 1991; 163:912).
106. For treatment of T.b. gambiense, pentamidine and suramin have equal efficacy but pentamidine is better tolerated.
107. In frail patients, begin with as little as 18 mg and increase the dose progressively. Pretreatment with suramin has been advocated for debilitated patients.
108. Eflornithine is highly effective in T.b. gambiense but not against T.b. rhodesiense infections. It is available in limited supply only from the WHO and the CDC.
109. Optimum duration of therapy is not known; some Medical Letter consultants would treat for 20d. For severe symptoms or eye involvement, corticosteroids can be used in addition.
Drugs for Parasitic Infections

MANUFACTURERS OF DRUGS USED TO TREAT PARASITIC INFECTIONS

albendazole – Albenza (GlaxoSmithKline)
Albenza (GlaxoSmithKline) – albendazole
Alinia (Romark) – nitazoxanide
amphotericin – Fungizone (Apothecon), and others
Ancobon (ICN) – flucytosine
§ Antiminth (Pfizer) – pyrantel pamoate
• Aralen (Sanofi) – chloroquine HCl and chloroquine phosphate
§ artemether – Artenam (Arenco, Belgium)
§ Artenam (Arenco, Belgium) – artemether
§ artesunate – (Guilin No. 1 Factory, People’s Republic of China)
atovaquone – Mepron (GlaxoSmithKline)
atovaquone/proguanil – Malarone (GlaxoSmithKline)
azithromycin – Zithromax (Pfizer)
• Bactrim (Roche) – TMP/Sulfa
§ benznidazole – Rochagan (Roche, Brazil)
Biaxin (Abbott) – clarithromycin
§ Biltricide (Bayer) – praziquantel
† bithionol – Bitin (Tanabe, Japan)
† Bitin (Tanabe, Japan) – bithionol
§ Brolene (Aventis, Canada) – propamidine isethionate
chloroquine HCl and chloroquine phosphate – Aralen (Sanofi), others
clarithromycin – Biaxin (Abbott)
• Cleocin (Pfizer) – clindamycin
clindamycin – Cleocin (Pfizer), and others
crotamiton – Eurax (Westwood-Squibb)
dapsone – (Jacobus)
Daraprim (GlaxoSmithKline) – pyrimethamine USP
† diethylcarbamazine citrate USP – Hetrazan
• Diflucan (Roerig) – fluconazole
§ diloxanide furoate – Furamide (Boots, United Kingdom)
doxycycline – Vibramycin (Pfizer), and others
† eflornithine (Difluoromethylornithine, DFMO) – Ornidy (Aventis)

* Available in the US only from the manufacturer.
§ Not available in the US; may be available through a compounding pharmacy.
† Available under an Investigational New Drug (IND) protocol from the CDC Drug Service, Centers for Disease Control and Prevention, Atlanta, Georgia 30333; 404-639-3670 (evenings, weekends, or holidays: 404-639-2888).
• Also available generically.
Drugs for Parasitic Infections

<table>
<thead>
<tr>
<th>§ Egaten (Novartis)</th>
<th>triclabendazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Elimite (Allergan)</td>
<td>permethrin</td>
</tr>
<tr>
<td>Ergamisol (Janssen)</td>
<td>levamisole</td>
</tr>
<tr>
<td>Eurax (Westwood-Squibb)</td>
<td>crotamiton</td>
</tr>
<tr>
<td>fluconazole – Diflucan (Roerig)</td>
<td></td>
</tr>
<tr>
<td>• Flagyl (Searle)</td>
<td>metronidazole</td>
</tr>
<tr>
<td>flucytosine – Ancobon (ICN)</td>
<td></td>
</tr>
<tr>
<td>§ Fungizone (Apothecon)</td>
<td>amphotericin</td>
</tr>
<tr>
<td>§ Furamide (Boots, United Kingdom)</td>
<td>diloxanide furoate</td>
</tr>
<tr>
<td>§ furazolidone – Furozone (Roberts)</td>
<td></td>
</tr>
<tr>
<td>§ Furozone (Roberts)</td>
<td>furazolidone</td>
</tr>
<tr>
<td>† Germanin (Bayer, Germany)</td>
<td>suramin sodium</td>
</tr>
<tr>
<td>§ Glucantime (Aventis, France)</td>
<td>meglumine antimonate</td>
</tr>
<tr>
<td>† Hetrazan</td>
<td>diethylcarbamazine citrate USP</td>
</tr>
<tr>
<td>Humatin (Monarch)</td>
<td>paromomycin</td>
</tr>
<tr>
<td>§ Impavido (Zentaris, Germany)</td>
<td>miltefosine</td>
</tr>
<tr>
<td>iodoquinol – Yodoxin (Glenwood), and others</td>
<td></td>
</tr>
<tr>
<td>itraconazole – Sporanox (Janssen-Ortho)</td>
<td></td>
</tr>
<tr>
<td>ivermectin</td>
<td>Stromectol (Merck)</td>
</tr>
<tr>
<td>ketoconazole</td>
<td>Nizoral (Janssen), and others</td>
</tr>
<tr>
<td>† Lampit (Bayer, Germany)</td>
<td>nifurtimox</td>
</tr>
<tr>
<td>• Lariam (Roche)</td>
<td>mefloquine</td>
</tr>
<tr>
<td>§ Leshecutan (Teva, Israel)</td>
<td>topical paromomycin</td>
</tr>
<tr>
<td>levamisole – Ergamisol (Janssen)</td>
<td></td>
</tr>
<tr>
<td>Malarone (GlaxoSmithKline)</td>
<td>atovaquone/proguanil</td>
</tr>
<tr>
<td>malathion – Ovide (Medicis)</td>
<td></td>
</tr>
<tr>
<td>mebendazole – Vermox (McNeil)</td>
<td></td>
</tr>
<tr>
<td>mefloquine – Lariam (Roche)</td>
<td></td>
</tr>
<tr>
<td>§ meglumine antimonate – Glucantime (Aventis, France)</td>
<td></td>
</tr>
<tr>
<td>† melarsoprol</td>
<td>Mel-B (Specia)</td>
</tr>
<tr>
<td>† Mel-B (Specia)</td>
<td>melarsoprol</td>
</tr>
<tr>
<td>Mepron (GlaxoSmithKline)</td>
<td>atovaquone</td>
</tr>
<tr>
<td>metronidazole – Flagyl (Searle), and others</td>
<td></td>
</tr>
<tr>
<td>§ miltefosine – Impavido (Zentaris, Germany)</td>
<td></td>
</tr>
<tr>
<td>NebuPent (Fujisawa)</td>
<td>pentamidine isethionate</td>
</tr>
<tr>
<td>Neutrexin (US Bioscience)</td>
<td>trimetrexate</td>
</tr>
<tr>
<td>§ niclosamide – Yomesan (Bayer, Germany)</td>
<td></td>
</tr>
<tr>
<td>† nifurtimox</td>
<td>Lampit (Bayer, Germany)</td>
</tr>
<tr>
<td>nitazoxanide – Alinia (Romark)</td>
<td></td>
</tr>
</tbody>
</table>

* Available in the US only from the manufacturer.

§ Not available in the US; may be available through a compounding pharmacy.

† Available under an Investigational New Drug (IND) protocol from the CDC Drug Service, Centers for Disease Control and Prevention, Atlanta, Georgia 30333; 404-639-3670 (evenings, weekends, or holidays: 404-639-2888).

• Also available generically.
Drugs for Parasitic Infections

- **Nizoral** (Janssen) – ketoconazole
- **Nix** (GlaxoSmithKline) – permethrin
- **Ornidazole** – **Tiberal** (Roche, France)
- **Ornidyl** (Aventis) – eflornithine (Difluoromethylornithine, DFMO)
- **Ovide** (Medicis) – malathion
- **Oxamniquine** – **Vansil** (Pfizer)
- **Ornidazole** – **Tiberal** (Roche, France)
- **Ornidyl** (Aventis) – eflornithine (Difluoromethylornithine, DFMO)
- **Ovide** (Medicis) – malathion
- **Oxamniquine** – **Vansil** (Pfizer)

† Sodium stibogluconate
- **Pentostam** (GlaxoSmithKline, United Kingdom)

- **Permethrin** – **Nix** (GlaxoSmithKline), **Elimite** (Allergan)
- **Praziquantel** – **Biltricide** (Bayer)
- **Praziquantel** – **Biltricide** (Bayer)
- **Proguanil** – **Paludrine** (Wyeth Ayerst, Canada; AstraZeneca, United Kingdom)
- **Paromomycin** – **Humatin** (Monarch), **Lesheutan** (Teva, Israel; topical formulation not available in US)
- **Pentam 300** (Fujisawa) – pentamidine isethionate
- **Pentam 300** (Fujisawa), **NebuPent** (Fujisawa)

‡ Sodium stibogluconate
- **Pentostam** (GlaxoSmithKline, United Kingdom)

- **Propamidine isethionate** – **Brolene** (Aventis, Canada)
- **Pyrantel pamoate** – **Antiminth** (Pfizer)
- **Pyrethrins and piperonyl butoxide** – **RID** (Pfizer), and others
- **Pyrimethamine USP** – **Daraprim** (GlaxoSmithKline)
- **Quinine dihydrochloride**
- **Quinidine gluconate** (Eli Lilly)
- **Quinine sulfate**

§ Available in the US only from the manufacturer.

§ Not available in the US; may be available through a compounding pharmacy.

† Available under an Investigational New Drug (IND) protocol from the CDC Drug Service, Centers for Disease Control and Prevention, Atlanta, Georgia 30333; 404-639-3670 (evenings, weekends, or holidays: 404-639-2888).

- **Also available generically.**
Drugs for Parasitic Infections

† suramin sodium – *Germanin* (Bayer, Germany)
§ *Tiberal* (Roche, France) – ornidazole
 Tindamax (Presutti) – tinidazole
 tinidazole – *Tindamax* (Presutti)
 TMP/Sulfa – *Bactrim* (Roche), and others
§ triclabendazole – *Egaten* (Novartis)
 trimetrexate – *Neutrexin* (US Bioscience)
§ *Vansil* (Pfizer) – oxamniquine
 Vermox (McNeil) – mebendazole
• *Vibramycin* (Pfizer) – doxycycline
• *Yodoxin* (Glenwood) – iodoquinol
§ *Yomesan* (Bayer, Germany) – niclosamide
• *Zithromax* (Pfizer) – azithromycin

* Available in the US only from the manufacturer.
§ Not available in the US; may be available through a compounding pharmacy.
† Available under an Investigational New Drug (IND) protocol from the CDC Drug Service, Centers for Disease Control and Prevention, Atlanta, Georgia 30333; 404-639-3670 (evenings, weekends, or holidays: 404-639-2888).
• Also available generically.
Many infections can be transmitted during sexual contact. The text and tables that follow are limited to management of sexually transmitted infections (STIs) other than HIV, viral hepatitis and enteric infections. Guidelines are available from the US Centers for Disease Control and Prevention (CDC) with detailed recommendations for treatment of these diseases (MMWR Recomm Rep 2002; 51, RR-6:1). New guidelines are expected soon.

PARTNER TREATMENT — Complete treatment for STIs should include the sex partners of infected persons. Ideally, partners should be examined and tested for STIs, but that is often difficult to accomplish. Some clinicians and health departments, therefore, routinely treat sex partners without direct examination or counseling, either by prescription or by giving the medication for the partner to the index patient, a practice known as expedited partner treatment (EPT). Medical Letter consultants recommend using EPT when the partner is identifiable and treatment cannot otherwise be assured.

CHLAMYDIA — A single 1 g dose of azithromycin (Zithromax) or 7 days’ treatment with a tetracycline are both effective for treatment of uncomplicated urethral or cervical infection caused by Chlamydia trachomatis. Taking azithromycin after a small snack (a few crackers or cookies) improves gastrointestinal (GI) tolerance. Seven days’ treatment with generic doxycycline or another tetracycline costs less, but compliance may be a problem. Ofloxacin (Floxin, and others) or levofloxacin (Levaquin) for 7 days are effective but expensive alternatives; they are most useful when chlamydial infection cannot be distinguished clinically from bacterial urinary tract infection.
In Pregnancy – Doxycycline, other tetracyclines and the fluoroquinolones generally should not be used during pregnancy. Azithromycin appears to be safe in pregnant women; most Medical Letter consultants consider it the treatment of choice (C Gardella, Curr Treat Opt Infect Dis 2003; 5:53). Amoxicillin (Amoxil, and others), an effective alternative, is also safe. Many patients, pregnant or not, cannot tolerate the GI effects of erythromycin, and erythromycin estolate is contraindicated in pregnancy. In general, treatment failure may be more common in pregnancy and repeat testing is recommended. Patients who fail treatment can usually be retreated with the same drug.

In Infancy – Children born to women with cervical *C. trachomatis* infection are at risk for conjunctivitis and pneumonia. Ophthalmic antibiotics used for gonococcal prophylaxis do not prevent ocular chlamydial infection in the newborn. For treatment of newborns with conjunctivitis or pneumonia caused by *C. trachomatis*, some clinicians have used systemic erythromycin for 14 days, but an association
between hypertrophic pyloric stenosis and use of erythromycin has been reported (BE Mahon et al, J Pediatr 2001; 139:380). In one small study, a short course of oral azithromycin was effective for treatment of chlamydial conjunctivitis (MR Hammerschlag et al, Pediatr Infect Dis J 1998; 17:1049).

GONORRHEA — Single doses of cefixime (*Suprax*) orally or ceftriaxone (*Rocephin*) intramuscularly (IM) are highly effective for uncomplicated anogenital or pharyngeal infection, including infection with penicillin- and tetracycline-resistant strains of *Neisseria gonorrhoeae*. Cefpodoxime (*Vantin*) is another option for oral therapy, although experience is limited. Single-dose treatment with ciprofloxacin (*Cipro*, and others), ofloxacin or levofloxacin is highly effective when *N. gonorrhoeae* are susceptible, but strains with clinically significant fluoroquinolone resistance are common worldwide, especially in Asia and the Pacific Islands (including Hawaii), and are increasing in the western United States. Fluoroquinolone-resistant

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefixime – Suprax (Lupin)</td>
<td>400 mg PO once</td>
<td>$8.41</td>
</tr>
<tr>
<td>Cefpodoxime – Vantin (Pharmacia)</td>
<td>400 mg PO once</td>
<td>11.64</td>
</tr>
<tr>
<td>Ceftriaxone – Rocephin (Roche)</td>
<td>125 mg IM once</td>
<td>16.58</td>
</tr>
<tr>
<td>Ciprofloxacin – average generic</td>
<td>500 mg PO once</td>
<td>5.07</td>
</tr>
<tr>
<td>Cipro (Bayer)</td>
<td></td>
<td>5.60</td>
</tr>
<tr>
<td>Levofoxacin – Levaquin (Ortho-McNeil)</td>
<td>250 mg PO once</td>
<td>9.14</td>
</tr>
<tr>
<td>Ofloxacin – Flaxin (Ortho-McNeil)</td>
<td>400 mg PO once</td>
<td>6.65</td>
</tr>
<tr>
<td>Spectinomycin – Trobin (Pharmacia)</td>
<td>2 g IM once</td>
<td>26.70</td>
</tr>
</tbody>
</table>

*Cost based on the most recent data (July 31, 2004) from retail pharmacies nationwide available from NDCHealth, a healthcare information services company.
gonorrhea has been reported nationwide in the US in men who have sex with men (MMWR Morbid Mortal Wkly Rep 2004; 53:335). All patients with gonorrhea should also be treated for presumptive chlamydial infection (unless it is ruled out by diagnostic testing), usually with a single dose of azithromycin or 7 days of doxycycline (SB Lyss et al, Ann Intern Med 2003; 139:178).

Gonococcal ophthalmia, bacteremia, arthritis or meningitis in adults and all gonococcal infections in children are best treated with appropriate doses of a parenteral third-generation cephalosporin such as ceftriaxone.

In Pregnancy – Spectinomycin (*Trobicin*) can be used to treat pregnant women allergic to beta-lactam antibiotics, but is unreliable against pharyngeal gonococcal infection. Gentamicin (*Garamycin*, and others) is a possible alternative.

Nongonococcal Nonchlamydial Urethritis and Cervicitis — Nongonococcal urethritis (NGU) in men is often nonchlamydial as well. Possibly caused by *Ureaplasma urealyticum*, *Mycoplasma genitalium* or other (unknown) pathogens, it usually responds to azithromycin or doxycycline. NGU that does not resolve with azithromycin or doxycycline may respond to erythromycin or ofloxacin, or in some cases to treatment for trichomoniasis.

Mucopurulent cervicitis (MPC) has been characterized as the female counterpart of NGU in men (P Nyirjesy, Curr Infect Dis Rep 2001; 3:540). Like NGU, MPC generally responds to azithromycin or doxycycline. Empiric treatment for *N. gonorrhoeae* should also be given in areas with high prevalence.

FOLLOW-UP — Early rescreening, 3-4 weeks after treatment, to confirm cure is not recommended except for chlamydia in pregnant women.
Drugs for Sexually Transmitted Infections

or when therapeutic compliance is in doubt. Late rescreening, 2-6 months after treatment, is indicated for all men and women with gonorrhea, for women with chlamydia, and probably for men with chlamydia to detect persistent infection or reinfection (P-A Mårdh and K Persson, Int J STD AIDS 2002; 13:363; CA Rietmeijer et al, Sex Transm Dis 2002; 29:65).

EPIDIDYMITIS — Acute epididymitis in men less than 35 years old is usually caused by *C. trachomatis* or, less frequently, *N. gonorrhoeae*. Older men or those who have had urinary tract instrumentation may have epididymitis due to enteric gram-negative bacilli or *Pseudomonas*. Gram-negative bacilli may also cause urethritis or epididymitis in men who practice insertive anal intercourse. When the organism is not known, epididymitis can be treated with ofloxacin or levofloxacin until microbiologic results are available.

PELVIC INFLAMMATORY DISEASE (PID) — *C. trachomatis* or *N. gonorrhoeae* cause about two thirds of cases of acute PID, but *Mycoplasma hominis* and various facultative and anaerobic bacteria may also be involved. Treatment regimens should include antimicrobial agents active against all of these pathogens. Parenteral regimens include either cefotetan (*Cefotan*) or cefoxitin (*Mefoxin*, and others), each plus doxycycline, or clindamycin (*Cleocin*, and others) plus an aminoglycoside. Parenteral therapy is continued until clinical improvement occurs, and then oral doxycycline is substituted to complete 14 days’ total therapy. Recommended oral regimens are ofloxacin or levofloxacin, with or without metronidazole, or doxycycline after an initial IM dose of ceftriaxone (JD Ross, Curr Opin Infect Dis 2003; 16:37).

TRICHOMONIASIS — Oral metronidazole has been the treatment of choice for trichomoniasis. Tinidazole (*Tindamax* — Medical Letter 2004; 46:70), a nitroimidazole similar to metronidazole, was recently approved by the FDA for trichomoniasis; it is as effective as metronida-
Drugs for Sexually Transmitted Infections

Intravaginal treatment with metronidazole is not effective. Sex partners must be treated simultaneously to prevent reinfection.

Treatment failures may be re-treated in both the patient and partner with a repeat single dose or with a longer course. Metronidazole-resistant strains of *T. vaginalis* can be treated with metronidazole 2 to 4 g/d for 7 to 14 days. A combination of tinidazole both orally (500 mg q.i.d.) and intravaginally (500 mg b.i.d.) for 14 days, or oral tinidazole alone 500 mg t.i.d. for 7 days also have been effective (JD Sobel et al, Clin Infect Dis 2001; 33:1341; WD Hager, Sex Transm Dis 2004; 31:343). An intravaginal tinidazole preparation is not commercially available, but can be compounded.

In pregnancy – Trichomoniasis in pregnancy has been associated with adverse pregnancy outcomes (D Soper, Am J Obstet Gynecol 2004; 190:281). Metronidazole is now believed to be safe during all stages of pregnancy and should be used to treat symptomatic trichomoniasis in pregnancy. However, in some placebo-controlled clinical trials among women with asymptomatic and symptomatic trichomoniasis, the frequency of preterm births has been higher in women treated with metron-

<table>
<thead>
<tr>
<th>Cost of Drugs for Trichomoniasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug</td>
</tr>
<tr>
<td>Metronidazole – average generic</td>
</tr>
<tr>
<td>Flagyl (Pharmacia)</td>
</tr>
<tr>
<td>Tinidazole – Tindamax (Presutti)</td>
</tr>
</tbody>
</table>

* Cost based on the most recent data (July 31, 2004) from retail pharmacies nationwide available from NDCHealth, a healthcare information services company.
Treatment of Some Sexually Transmitted Infections

<table>
<thead>
<tr>
<th>Type or Stage</th>
<th>Drugs of Choice</th>
<th>Dosage</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHLAMYDIAL INFECTION AND RELATED CLINICAL SYNDROMES<sup>1</sup> (except lymphogranuloma venereum)</td>
<td>Azithromycin (Zithromax) 1g oral once</td>
<td>Ofloxacin (Floxin) <sup>3</sup> 300 mg oral bid x7d Levofloxacin (Levaquin)<sup>2</sup> 500 mg oral once/d x 7d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR Doxycycline (Vibramycin)<sup>2,3</sup> 100 mg oral bid x 7d</td>
<td>Erythromycin (Ery-tab*)<sup>4</sup> 500 mg oral qid x 7d</td>
<td></td>
</tr>
<tr>
<td>Infection in Pregnancy</td>
<td>Azithromycin (Zithromax) 1g oral once</td>
<td>Erythromycin<sup>4</sup> 500 mg oral qid x 7d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR Amoxicillin (Amoxil*)<sup>2</sup> 500 mg oral tid x 7d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonatal Ophthalmia or Pneumonia</td>
<td>Azithromycin 20 mg/kg oral once daily x 3d</td>
<td>Erythromycin 12.5 mg/kg oral qid x 14d<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR Doxycycline<sup>2,3</sup> 100 mg oral bid x 21d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPIDIDYMITIS</td>
<td>Ofloxacin (Floxin*) 300 mg bid x 10d</td>
<td>Ceftriaxone 250 mg IM once followed by doxycycline<sup>2</sup> 100 mg oral bid x 10d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR Levofloxacin (Levaquin) 500 mg oral once daily x 10d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GONORRHEA<sup>6</sup> — Urethral, cervical, rectal or pharyngeal</td>
<td>Cefixime (Suprax) 400 mg oral once</td>
<td>Cefpodoxime (Vantin) 400 mg oral once Ciprofloxacin<sup>3,7</sup> (Cipro*) 500 mg oral once</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR Ceftriaxone (Rocephin) 125 mg IM once</td>
<td>Levofloxacin<sup>3,7</sup> 250 mg oral once Spectinomycin (Trobicin) 2 g IM once<sup>8</sup></td>
<td></td>
</tr>
<tr>
<td>PELVIC INFLAMMATORY DISEASE —parenteral</td>
<td>Cefotetan (Cefetan) or cefoxitin (Meloxin*)<sup>2</sup> 2g IV q12h</td>
<td>Ofloxacin<sup>3,4</sup> 400 mg IV q12h or Ciprofloxacin<sup>3,7</sup> (Cipro*) 500 mg IV q12h or Levofloxacin<sup>3,7</sup> 250 mg oral once Sulfamethoxazole/trimethoprim (Septra) 2 g IV q12h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>plus doxycycline<sup>3</sup> 100 mg IV or oral q12h, until improved</td>
<td>Amoxicillin/sulbactam (Unasyn) 3g IV q12h plus doxycycline<sup>3</sup> 100 mg orally or IV q12h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>followed by doxycycline<sup>3</sup> 100 mg oral bid to complete 14d<sup>10</sup></td>
<td>All continued until improved, then followed by doxycycline<sup>3</sup> 100 mg oral bid to complete 14d<sup>10</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR Clindamycin (Cleocin*) 900 mg IV q8h</td>
<td>plus gentamicin (Garamycin*) 2 mg/kg IV once, then 1.5 mg/kg IV q8h<sup>11</sup>, until improved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>plus doxycycline<sup>3</sup> 100 mg oral bid to complete 14d<sup>10</sup></td>
<td>followed by doxycycline<sup>3</sup> 100 mg oral bid to complete 14d<sup>10</sup></td>
<td></td>
</tr>
</tbody>
</table>

Related clinical syndromes include nonchlamydial nongonococcal urethritis and cervicitis.

1. Related clinical syndromes include nonchlamydial nongonococcal urethritis and cervicitis.
2. Or oral tetracycline 500 mg qid.
3. Not recommended in pregnancy.
4. Erythromycin ethylsuccinate 800 mg may be substituted for erythromycin base 500 mg; erythromycin estolate is contraindicated in pregnancy.
5. Pyloric stenosis has been associated with use of erythromycin in newborns.
6. All patients should also receive a course of treatment effective for Chlamydia.
7. Fluoroquinolones should not be used to treat gonorrhea acquired in Asia, Hawaii, Israel, or other areas where fluoroquinolone-resistant strains of N. gonorrhoeae are common.
8. Recommended only for use during pregnancy in patients allergic to β-lactams. Not effective for pharyngeal infection.
9. Some clinicians believe the addition of metronidazole is not required.
10. Or clindamycin 450 mg oral qid to complete 14 days.
11. A single daily dose of 3 mg/kg is likely to be effective, but has not been studied in pelvic inflammatory disease.

VAGINAL INFECTIONS — Sulfonamide creams, other “broad-spectrum” vaginal preparations, and currently available preparations of *Lactobacillus* species or dairy products are not reliably effective for treatment or prevention of any vaginal infection. Douching is not effective for prevention or treatment of vaginal infection, may lead to upper genital tract infection, and should be discouraged.

BACTERIAL VAGINOSIS — The role of sexual transmission is unclear in bacterial vaginosis, in which normal *H₂O₂*-producing *Lactobacillus* species are replaced by overgrowth with *Gardnerella vaginalis, M. hominis, Mobiluncus* and various anaerobes. Oral metronidazole for 7 days is usually effective for treatment. Single-dose oral metronidazole has similar short-term efficacy, but is followed by a higher rate of relapse. Vaginal metronidazole, or oral or vaginal clindamycin, are also effective. With any regimen, recurrence is common; re-treatment with the same agent is often effective. Treatment of sex partners does not reduce the frequency of recurrence.

In pregnancy – Bacterial vaginosis has been associated with premature labor and complications of delivery, and symptomatic bacterial vaginosis in pregnancy should be treated (CC Tebes et al, Infect Dis Obstet Gynecol 2003; 11:123). In controlled trials, however, treatment of asymptomatic bacterial vaginosis in pregnant women with oral metronidazole has not consistently reduced the frequency of adverse pregnancy outcomes, and vaginal clindamycin has not decreased the incidence of preterm delivery (JC Carey et al, N Engl J Med 2000; 342:534; M Kekki et al, Obstet Gynecol 2001; 97:643). Bacterial vaginosis has also been associated with an increased risk of
Drugs for Sexually Transmitted Infections

Treatment of Some Sexually Transmitted Infections

<table>
<thead>
<tr>
<th>Type or Stage</th>
<th>Drugs of Choice</th>
<th>Dosage</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>PELVIC INFLAMMATORY DISEASE<sup>(continued)</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—oral</td>
<td>Ofloxacin<sup>3</sup></td>
<td>400 mg oral bid x 14d</td>
<td>Cefoxitin 2g once plus probenecid 1g oral once followed by doxycycline<sup>3,12</sup> 100 mg oral bid x 14d</td>
</tr>
<tr>
<td>OR</td>
<td>Levofoxacin<sup>3</sup></td>
<td>500 mg once daily x 14d</td>
<td>Cefoxitin 2g once plus probenecid 1g oral once followed by doxycycline<sup>3,12</sup> 100 mg oral bid x 14d</td>
</tr>
<tr>
<td>OR</td>
<td>+/- metronidazole<sup>9</sup></td>
<td>500 mg oral bid x 14d</td>
<td>Cefoxitin 2g once plus probenecid 1g oral once followed by doxycycline<sup>3,12</sup> 100 mg oral bid x 14d</td>
</tr>
<tr>
<td>OR</td>
<td>Ceftriaxone followed by doxycycline<sup>3,12</sup></td>
<td>250 mg IM once</td>
<td>Cefoxitin 2g once plus probenecid 1g oral once followed by doxycycline<sup>3,12</sup> 100 mg oral bid x 14d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 mg oral bid x 14d</td>
<td>Cefoxitin 2g once plus probenecid 1g oral once followed by doxycycline<sup>3,12</sup> 100 mg oral bid x 14d</td>
</tr>
<tr>
<td>TRICHOMONIASIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Metronidazole (Flagyl®)</td>
<td>2g oral once</td>
<td>Metronidazole 375 or 500 mg oral bid x 7d</td>
</tr>
<tr>
<td>OR</td>
<td>Tinidazole (Tindamax)</td>
<td>2g oral once</td>
<td>Metronidazole 375 or 500 mg oral bid x 7d</td>
</tr>
<tr>
<td>BACTERIAL VAGINOSIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Metronidazole</td>
<td>500 mg oral bid x 7d</td>
<td>Metronidazole 2g oral once<sup>13</sup> or Flagyl ER 750 mg once daily x 7d</td>
</tr>
</tbody>
</table>
| OR | Metronidazole gel 0.75%
¹⁴ | 5g intravaginally once or twice daily x 5d | Metronidazole 2g oral once¹³ or Flagyl ER 750 mg once daily x 7d |
| OR | Clindamycin 2% cream
¹⁴ | 5g intravaginally qhs x 3-7d | Metronidazole 2g oral once¹³ or Flagyl ER 750 mg once daily x 7d |
| **SYPHILIS** | | | |
| Early (Primary, secondary, or latent less than one year) | Penicillin G benzathine | 2.4 MU IM once¹⁵ | Doxycycline³ 100 mg oral bid x 14d |
| Late (more than one year's duration, cardiovascular, gumma, late-latent) | Penicillin G benzathine | 2.4 MU IM weekly x 3wks | Doxycycline³ 100 mg oral bid x 4wks |
| Neurosyphilis | Penicillin G | 3 to 4 MU IV q4h or 24 MU continuous IV infusion x 10-14d | Penicillin G procaine 2.4 million U IM daily plus probenecid 500 mg qid oral, both x 10-14d |
| Congenital | Penicillin G procaïne | 50,000 units/kg IV q8-12h for 10-14d | Ceftriaxone 2g IV once daily x 10-14d |
| CHANCROID | Azithromycin 1g oral once | Ciprofloxacin³ 500 mg oral bid x 3d | Ceftriaxone 250 mg IM once |
| GENITAL WARTS | Trichloroacetic or bichloroacetic acid, or podophyllin³ or liquid nitrogen | 1-2x/wk until resolved | Surgical removal |
| OR | Imiquimod 5% (Aldara³) 3x/wk x 16wks | Podofilox 0.5% (Condylol³) bid x 3d, 4 days rest, then repeated up to 4x | Laser surgery |
| | Surgical removal | Intraligamental interferon | Laser surgery |

¹² Some experts would add metronidazole 500 mg bid.
¹³ Higher relapse rate with single dose, but useful for patients who may not comply with multiple-dose therapy.
¹⁴ In pregnancy, topical preparations have not been effective in preventing premature delivery; oral metronidazole has been effective in some studies.
¹⁵ Some experts recommend a repeat dose after seven days, especially in patients with HIV infection or pregnant women.
¹⁶ All regimens, especially single-dose ceftriaxone, are less effective in HIV-infected patients.
¹⁷ Recommendations for external genital warts. Liquid nitrogen can also be used for vaginal, urethral, and oral warts. Podofilox or imiquimod can be used for urethral meatus warts. Trichloroacetic or bichloroacetic acid can be used for anal warts.
¹⁸ Patients allergic to penicillin should be desensitized and treated with penicillin.

VULVOVAGINAL CANDIDIASIS — Vulvovaginal candidiasis is not sexually transmitted, but is often found incidentally in women with STIs. Many remedies are available for vulvovaginal candidiasis. One-, 3- and 7-day regimens of intravaginal butoconazole, clotrimazole, miconazole, terconazole or tioconazole are effective for uncomplicated vulvovaginal candidiasis (Medical Letter 2001; 43:3). A single oral dose of fluconazole (*Diflucan*, and others) 150 mg is as effective as 7 days of clotrimazole or miconazole intravaginally and is preferred by many patients, but can cause GI symptoms; severe episodes may require a second oral dose of fluconazole 72 hours after the first (JD Sobel et al, Am J Obstet Gynecol 2001; 185:363).

Recurrences are common after all regimens. Six-month prophylactic regimens of oral fluconazole 150 mg once weekly, have been effective in most women with multiple culture-proven, recurrent infections (JD Sobel et al, N Engl J Med 2004; 351:876). Vulvovaginal candidiasis occasionally is caused by azole-resistant *Candida glabrata*, which in one study was treated successfully with 14-day courses of daily intravaginal boric acid 600 mg in a gelatin capsule or topical flucytosine cream (JD Sobel et al, Am J Obstet Gynecol 2003; 189:1297). It is unclear whether such cases are increasing in frequency (JD Sobel, Curr Infect Dis Rep 2001; 3:546).

SYPHILIS — Parenteral penicillin G remains the drug of choice for treating all stages of syphilis. Primary, secondary or latent syphilis known to be of less than one year’s duration should be treated with an intramuscular injection of benzathine penicillin G, a repository formulation. Doxycycline is also usually effective if compliance is assured. A longer course of treatment, preferably with intramuscular penicillin G
Drugs for Sexually Transmitted Infections

benzathine, is required for late syphilis (more than one year’s duration) other than neurosyphilis.

In small trials, a single dose of oral azithromycin (2 g) appeared promising for treatment of early syphilis (EW Hook III et al, Sex Transm Dis 2002; 29:486), but treatment failures have been reported in some populations particularly, men who have sex with men, and the prevalence of azithromycin-resistant strains of Treponema pallidum is high and may be rising (SA Lukehart et al, N Engl J Med 2004; 351:154). Until the results of larger trials are available, azithromycin should be used against syphilis with caution, if at all.

Neurosyphilis – Symptomatic neurosyphilis, including ophthalmic or otic infection, requires treatment with high doses of aqueous penicillin G IV or procaine penicillin G IM with probenecid.

Syphilis and HIV – Most clinicians treat HIV-infected patients with syphilis and normal CSF with standard penicillin doses for the stage of
syphilis, but some patients may need higher doses or longer treatment. Even high-dose IV therapy fails to cure neurosyphilis in up to 25% of HIV-infected patients. Controversy exists as to whether subclinical or asymptomatic neurosyphilis, which is common, regardless of the stage of infection, in patients with high titers (≥1:32) of non-treponemal serological tests and in HIV-infected persons with CD4 lymphocyte counts ≤350 cells/mm³, should be treated with high-dose penicillin in the same manner as symptomatic neurosyphilis (CM Marra et al, J Infect Dis 2004; 189:369).

Ceftriaxone for 10 days is probably as effective as IV penicillin for treatment of neurosyphilis in HIV-infected patients, but its efficacy for parynchymal or late forms of neurosyphilis has not been studied (CM Marra et al, Clin Infect Dis 2000; 30:540).

Syphilis in Pregnancy – Syphilis in pregnant women should be treated with penicillin in doses appropriate to the stage of the disease. When pregnant women with syphilis are allergic to penicillin, the US Public Health Service recommends hospitalization, desensitization and treatment with penicillin. Re-treatment in subsequent pregnancies is unnecessary in the absence of clinical or serological evidence of new or persistent infection.

Congenital Syphilis – A positive serological test for syphilis in a newborn without stigmata of syphilis may be due either to passive transfer of maternal antibodies or to prenatal infection. If there is no definite evidence of adequate treatment of the mother with penicillin during the pregnancy, Medical Letter consultants recommend prompt treatment of such infants rather than waiting 3 to 6 months to see if the antibody titer falls.

CHANCROID — Chancroid, caused by *Haemophilus ducreyi*, is rare in the US. A single dose of azithromycin or ceftriaxone is usually effective, but may be less effective in HIV-infected patients.
PEDICULOSIS AND SCABIES — *Phthirus pubis* (pubic lice), which can be found on eyelashes, back, axillary and leg hairs as well as pubic areas, and *Sarcoptes scabiei* infestation (scabies) can both be transmitted sexually. The drug of choice for pubic lice is topical 1% permethrin, and for scabies is 5% permethrin. Oral ivermectin (*Stromectol*) (200 mcg/kg) is also effective as a single dose for treatment of lice, and has been used once daily for 3 days for resistant infections with scabies. Crusted scabies, a serious complication usually seen in patients with AIDS or other immunodeficiencies, should be treated with both permethrin and ivermectin (P del Giudice, Curr Opin Infect Dis 2002; 15:123).

GENITAL WARTS AND HUMAN PAPILLOMAVIRUS (HPV) INFECTION — External genital warts are caused by human papillomavirus, usually type 6 or 11; other types (16, 18 and others) cause dysplasia and neoplasia of the cervix, anus and genital skin. No form of HPV-specific treatment has been shown to eradicate the virus or to modify the risk of cervical dysplasia or cancer, and no single treatment is uniformly effective in removing warts or preventing recurrence. Trichloroacetic acid, podophyllin, and cryotherapy (with liquid nitrogen or a cryoprobe) remain the most widely used treatments for external genital warts, but the response rate is only 60% to 70%, and at least 20%

Cost of Drugs for Genital Herpes (initial episode)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclovir – average generic</td>
<td>400 mg PO tid x 7-10d</td>
<td>$38.01</td>
</tr>
<tr>
<td>Zovirax (GSK)</td>
<td></td>
<td>66.57</td>
</tr>
<tr>
<td>Famciclovir – Famvir (Novartis)</td>
<td>250 mg PO tid x 7-10d</td>
<td>87.15</td>
</tr>
<tr>
<td>Valacyclovir – Valtrex (GSK)</td>
<td>1 g PO bid x 7-10d</td>
<td>115.64</td>
</tr>
</tbody>
</table>

* Cost of 7 days’ treatment based on the most recent data (July 31, 2004) from retail pharmacies nationwide available from NDCHealth, a health care information services company.
to 30% of responders will have a recurrence. Imiquimod 5% cream (*Aldara*), an immune modulator, and podofilox 0.5% solution or gel (*Condylox*) are no more effective, but they offer the advantage of self-application by patients at home.

No treatment is recommended for subclinical HPV infection in the absence of dysplasia or neoplasia. The short duration of most HPV infections in young women suggests that these infections and the low-grade cervical dysplasia often associated with them should both be treated conservatively as they often regress spontaneously (AB Moscicki et al, JAMA 2001; 285:2995). Vaccines to prevent HPV infection are in development and appear promising (LA Koutsky et al, N Engl J Med 2002; 347:1645).

In Pregnancy – Imiquimod, podofilox and podophyllin are not recommended for use during pregnancy. Topical trichloroacetic acid, cryotherapy, electrodesiccation and electrocauterization are options and can be used in pregnancy. Scissor excision or laser therapy are effective and well-tolerated if the clinician is properly trained.

GENITAL HERPES — Acyclovir (*Zovirax*, and others), famciclovir (*Famvir*) or valacyclovir (*Valtrex*) taken orally for 7-10 days shortens the duration of pain, viral shedding and systemic symptoms in initial herpes simplex virus genital infection. Continuous suppressive therapy with the same drugs decreases symptomatic recurrences and subclinical shedding without cumulative toxicity or apparent development of resistance in immunocompetent persons. Acyclovir-resistant strains of HSV have been reported, however, in previously treated HIV patients (M Reyes et al, Arch Intern Med 2003; 163:76).

Acyclovir, famciclovir or valacyclovir also speeds healing of symptomatic recurrent lesions if treatment is started early; treatment with 2
Days of "high-dose" acyclovir (800 mg t.i.d.) or a 3-day course of valacyclovir appears to be as effective as longer regimens in healthy patients (A Wald et al, Clin Infect Dis 2002; 34:944; PA Leone et al, Clin Infect Dis 2002; 34:958). Most patients experience little improvement, however, and most Medical Letter consultants prefer continuous suppressive therapy to waiting for recurrences and treating them episodically.

In one study, valacyclovir 500 mg daily in heterosexual monogamous couples reduced the risk of sexual transmission of HSV (L Corey et al, N Engl J Med 2004; 350:11).

In pregnancy – Although acyclovir is not approved for treatment of pregnant women, its use during pregnancy has not been associated with an increased risk of congenital abnormalities, and many clinicians prescribe the drug for treatment of first episodes of genital herpes during pregnancy. Suppression of recurrent genital herpes in pregnant women near term reduces the need for cesarean sections to avoid neonatal herpes infections.

PROPHYLAXIS FOLLOWING SEXUAL ASSAULT — Many experts recommend that sexually assaulted adults and adolescents be given treatment to prevent sexually transmitted infections, including therapy for gonorrhea (cefixime, ciprofloxacin or ceftriaxone), chlamydial infection (azithromycin or doxycycline) and bacterial vaginosisis and trichomoniasis (metronidazole or tinidazole). Prophylaxis is not routinely used for children. If not previously immunized, vaccination against hepatitis B (Engerix-B, Recombivax HB) should be initiated. Some experts also recommend post-exposure prophylaxis against HIV infection such as zidovudine (Retrovir) plus lamivudine (Epivir) with or without a protease inhibitor (Treatment Guidelines 2004; 2:1) in high risk situations such as multiple assailants or an assailant believed to be HIV-infected; treatment should be started within 72 hours.
Advice for Travelers

Patients planning to travel to other countries often ask physicians for advice about immunizations and prevention of diarrhea and malaria. More detailed advice for travelers is available from the Centers for Disease Control (CDC) at 877-FYI-TRIP (877-394-8747) or www.cdc.gov/travel. Recommendations for the treatment of parasitic diseases are available in the public reading room of The Medical Letter’s web site (www.medicalletter.org).

MALARIA

Countries with a risk of malaria are listed on page 211. Some countries with both urban and rural malaria transmission may not have malaria in the most frequently visited major cities.

Prevention – Drugs for prevention of malaria are listed in the table on page 213. No drug for malaria prevention is 100% effective. Travelers to countries that have malaria should seek prompt medical attention for febrile illness while traveling and after return, especially in the first 2 months.

Chloroquine is the drug of choice for prevention of malaria in the few places that still have chloroquine-sensitive malaria: Central America west of the Panama Canal Zone, Paraguay, northern Argentina, Mexico, Haiti, the Dominican Republic and most of the Middle East (chloroquine resistance has been reported in Iran, Yemen, Oman, and Saudi Arabia). In rural areas of China where malaria occurs, it is generally chloroquine sensitive. Only Hainin and Yunnan provinces have chloroquine resistance.
Advice for Travelers

For prevention of chloroquine-resistant malaria, 3 drugs with equal efficacy are available in the US. Malarone, a fixed-dose combination of atovaquone and proguanil taken once daily (Medical Letter 2000; 42:109) is generally the best tolerated (D Overbosch et al, Clin Infect Dis 2001; 33:1015; P Schlagenhauf et al, BMJ 2003; 327:1078). It can cause gastrointestinal disturbances, and was recently associated with a case of Stevens-Johnson syndrome (M Emberger et al, Clin Infect Dis 2003; 37:e5).

Mefloquine is taken once weekly, but recent reports of serious psychiatric adverse effects have prompted the manufacturer, along with the FDA, to strengthen the drug's contraindications and warnings. It is contraindicated in patients with a history of depression, anxiety, psychosis, schizophrenia or other major psychiatric disorder, seizures, or cardiac conduction abnormalities. Dizziness, headache, insomnia and disturbing dreams are the most common CNS adverse effects. If a patient develops anxiety, depression, restlessness or confusion while taking mefloquine, it should be stopped (www.fda.gov/medwatch/SAFETY/2002/safety02.htm#lariam). Adverse effects of mefloquine in children are similar to those in adults (TA Albright et al, J Travel Med 2002; 9:289).

Doxycycline, which frequently causes gastrointestinal disturbances and can cause photosensitivity and vaginitis, offers an inexpensive once-daily alternative for travelers >8 years old who are not pregnant. Both doxycycline and atovaquone/proguanil are effective for prophylaxis against mefloquine-resistant malaria, which occurs in the border regions between Thailand and Myanmar and Thailand and Cambodia.

For prevention of malaria after departure from areas where Plasmodium vivax and P. ovale are endemic, which includes almost all areas where malaria is found (except Haiti), some Medical Letter consultants prescribe primaquine phosphate 15 mg base daily for adults in
Advice for Travelers

Addition or, for children, 0.3 mg base/kg/d during the last two weeks of prophylaxis ("terminal prophylaxis"). Others prefer to avoid the toxicity of primaquine and rely on surveillance to detect cases. Primaquine can cause hemolytic anemia, especially in patients with glucose-6-phosphate dehydrogenase (G-6-PD) deficiency, which is most common in African, Asian, and Mediterranean peoples. Travelers should be screened for G-6-PD deficiency before treatment. Primaquine should not be used during pregnancy. For patients unable to take other drugs, several studies have shown that daily primaquine beginning one day before departure from home and continued during travel until 2 days after leaving the malarious area can provide effective prophylaxis against chloro-
Advice for Travelers

Protection Against Insect Bites – To minimize insect bites, travelers should wear light-colored, long-sleeved shirts, pants and socks. The most effective topical insect repellent is N, N-diethyl-m-toluamide (DEET) (Medical Letter 2003; 45:41; MS Fradin and JF Day, N Engl J Med 2002; 347:13). Sprayed on exposed skin, DEET repels mosquitoes, ticks, chiggers, fleas, gnats and some flies. DEET is available in formulations of 5-40% and 100%. Higher concentrations do not improve efficacy, but usually protect longer; 30-35% DEET formulations are preferred by Medical Letter consultants. A long-acting DEET formulation originally developed for the US Armed Forces (US Army Extended Duration Topical Insect and Arthropod Repellent – EDTIAR) containing 25-33% DEET (*Ultrathon*) can provide protection for 6-12 hours.

Used as directed, DEET concentrations of up to 50% are probably safe in children and infants >2 months of age; it should not be used at all in infants <2 months old. One study found that applying DEET regularly during the second and third trimesters of pregnancy did not result in any adverse effects on the fetus (R McGready et al, Am J Trop Med Hyg 2001; 65:285). DEET may decrease the effectiveness of sunscreens; when they are used together, a sunscreen with a higher SPF should be used.

Permethrin (*Duranon, Permanone* and others) is an insecticide that is available in liquid and spray form for use on clothing, mosquito nets, tents and sleeping bags for protection against mosquitoes and ticks. It is more effective than DEET against ticks. After application to clothing, it remains active for several weeks through multiple launderings. If bednets or tents are immersed in the liquid, the effect can last for
Drugs of Choice for Prevention of Malaria

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adult dosage</th>
<th>Pediatric dosage</th>
<th>Cost²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroquine-resistant areas:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atovaquone/proguanil² – Malarone</td>
<td>250 mg/100 mg (1 tablet) daily</td>
<td>11-20 kg: 62.5 mg/25 mg daily</td>
<td>$108.24</td>
</tr>
<tr>
<td></td>
<td>21-30 kg: 125 mg/50 mg daily</td>
<td>21-30 kg: 125 mg/50 mg daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31-40 kg: 187.5 mg/75 mg daily</td>
<td>>40 kg: 250 mg/100 mg daily</td>
<td></td>
</tr>
<tr>
<td>OR Mefloquine³ – average generic price Laritam</td>
<td>250 mg (228 mg base) once/week</td>
<td><5 kg: 5 mg/kg once/week</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-10 kg: 1/8 tablet once/week</td>
<td>5-10 kg: 1/8 tablet once/week</td>
<td>67.97</td>
</tr>
<tr>
<td></td>
<td>11-20 kg: ¼ tablet once/week</td>
<td>11-20 kg: ¼ tablet once/week</td>
<td>79.87</td>
</tr>
<tr>
<td></td>
<td>21-30 kg: ½ tablet once/week</td>
<td>21-30 kg: ½ tablet once/week</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31-45 kg: ¾ tablet once/week</td>
<td>>45 kg: 1 tablet once/week</td>
<td></td>
</tr>
<tr>
<td>OR Doxycycline hyclate⁴ – average generic price Vibramycin</td>
<td>100 mg daily</td>
<td>2 mg/kg/day up to 100 mg/day</td>
<td>35.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>204.68</td>
</tr>
<tr>
<td>Chloroquine-sensitive areas:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroquine phosphate⁵ – Aralen</td>
<td>500 mg (300 mg base) once/week</td>
<td>5 mg/kg base once/week, up to adult dose of 300 mg base</td>
<td>26.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40.46</td>
</tr>
</tbody>
</table>

1. Cost of adult dosage for a 14-day stay including pre- and post-exposure doses, according to data from retail pharmacies nationwide provided by NDCHealth, a health care information services company, February 2004.

2. Beginning 1 to 2 days before travel and continuing daily for 1 week after leaving a malaria zone. It is not known whether it is safe in pregnancy. There are case reports of atovaquone/proguanil being used to treat malaria in pregnant women (R McGready et al, Eur J Clin Pharmacol 2003; 59:545).

3. Beginning 1 to 2 weeks before travel and continuing weekly for 4 weeks after leaving malaria zone. Mefloquine has not been approved for use during pregnancy. However, it has been reported to be safe for prophylactic use during the second or third trimester of pregnancy and possibly during early pregnancy as well (CDC, Health Information for International Travel, 2003-2004, page 111; BL Smoak et al, J Infect Dis 1997; 176:831). Resistance to mefloquine is a significant problem in the border regions between Thailand and Myanmar and Thailand and Cambodia.

4. Beginning 1 to 2 days before travel and continuing daily for 4 weeks after leaving malaria zone. Use of tetracyclines is contraindicated in pregnancy and in children <8 yrs. old.

5. Beginning 1 to 2 weeks before travel and continuing weekly for the duration of stay and for 4 weeks after leaving. In pregnancy, chloroquine prophylaxis has been used extensively and safely.

about 6 months. It can also be used in combination with DEET for increased protection. Using permethrin-impregnated mosquito nets while sleeping can be helpful when rooms are not screened or air-conditioned.

A new product, picaridin (KBR3023; Bayrepel; Autan Repel, and others – SC Johnson), a piperidine derivative available in the US, Europe and Australia, may prove to be as effective as DEET. In a controlled field trial, 19.2% picaridin was as effective against mosquitoes (>95% protection for 8 hours) as US Army EDTIAR (SP Frances et al, J Med Entomol 2002; 39:541). [Since this article was published, The Medical Letter has reviewed picaridin. See page 235.]
Advice for Travelers

TRAVELERS’ DIARRHEA

The most common cause of travelers’ diarrhea, usually a self-limited illness lasting several days, is infection with enterotoxigenic *Escherichia coli* (Z-D Jiang et al, J Infect Dis 2002; 185:497). *Campylobacter, Shigella, Salmonella, Aeromonas*, viruses and parasites are less common. Children tend to have more severe illness and are particularly susceptible to dehydration (WM Stauffer et al, J Travel Med 2002; 9:141). Travelers to areas where hygiene is poor should avoid raw vegetables, fruit they have not peeled themselves, unpasteurized dairy products, cooked food not served steaming hot, and tap water, including ice.

Prophylaxis – Medical Letter consultants generally do not prescribe antibiotic prophylaxis for travelers’ diarrhea, but rather instruct the patient to begin self-treatment when symptoms are distressing or persistent. Some travelers, however, such as immunocompromised patients, might benefit from prophylaxis. In such patients, once-daily ciprofloxacin (*Cipro*) 500 mg, levofloxacin (*Levaquin*) 500 mg, ofloxacin (*Floxin*) 300 mg or norfloxacin (*Noroxin*) 400 mg can be given and are generally well tolerated. Bismuth subsalicylate (*Pepto-Bismol*, and others) can also prevent diarrhea in travelers who take 2 tablets 4 times/d, but it is less effective than antibiotics.

Treatment – Loperamide (*Imodium*, and others), an over-the-counter synthetic opioid (4-mg loading dose, then 2 mg orally after each loose stool to a maximum of 16 mg/d for adults), usually relieves symptoms of travelers’ diarrhea in <24 hours. Loperamide is approved for use in children >2 years old.

If diarrhea is severe or associated with fever or bloody stools, self-treatment with a 3-day course of ciprofloxacin 500 mg b.i.d., levofloxacin 500
mg once daily, norfloxacin 400 mg b.i.d. or ofloxacin 300 mg b.i.d. is recommended. One- and two-day courses may also be effective (R Steffen et al, J Travel Med 2003; 10:38). Azithromycin (Zithromax) (1000 mg as a single dose or 500 mg/d x 3d) is an alternative (JA Adachi et al, Clin Infect Dis 2003; 37:1165) and is the drug of choice for travelers to areas with a high prevalence of fluoroquinolone-resistant Campylobacter, such as Thailand. It can also be used in other select groups, including pregnant women, children (10 mg/kg/d x 3d), and patients who do not respond to a fluoroquinolone in 48 hours.

[Rifaximin (Xifaxan), a non-absorbed oral antibiotic indicated for treatment of travelers’ diarrhea caused by noninvasive strains of E. coli., was approved by the FDA after publication of this article. The Medical Letter has reviewed rifaximin (Xifaxan). See page 232.]

Packets of oral rehydration salts mixed in potable water can help maintain electrolyte balance, particularly in children and the elderly. They are available from suppliers of travel-related products and in some pharmacies in the US, and from pharmacies overseas.

IMMUNIZATIONS

Immunocompromised or pregnant patients generally should not receive live virus vaccines, such as those for measles and yellow fever, although in some situations the benefit might outweigh the risk. Guidelines for pediatric and adult immunization have been published (Morbid Mortal Wkly Rep MMWR 2003; 52:965 and 2004; 53[1]:Q1). Pediatric travelers should be up to date on all routine immunizations in addition to receiving country-specific vaccines (HH Balkhy, Int J Antimicrob Agents 2003; 21:193; SM Mackell, Clin Infect Dis 2003; 37:1508).
Advice for Travelers

Cholera – The risk of infection with cholera is very low in tourists. The parenteral vaccine licensed in the US is no longer available. One oral vaccine called Dukoral is available in some countries in Europe (Chiron) and in Canada (Aventis Pasteur). It is not currently recommended for routine use in travelers. Vaccination might be considered for travelers who plan to do relief work (refugee camps).

Haemophilus influenzae type b (Hib) – Hib is endemic worldwide. Previously unvaccinated infants <15 months of age should receive 2 doses of Hib vaccine (ActHIB, and others) at least 4 weeks apart before travel; children 15 months-5 years should receive a single Hib dose.

Hepatitis A – Hepatitis A vaccine (Havrix – GlaxoSmithKline; Vaqta – Merck) is recommended for all susceptible travelers going anywhere other than Canada, Australia, New Zealand, Japan or developed countries in Europe (AS Craig and W Schaffner, N Engl J Med 2004; 350:476). Pre-vaccination serologic testing is not recommended, except in select circumstances such as travelers who originally emigrated from high-risk areas or are members of high-risk populations such as men who have sex with men.

Hepatitis A vaccination for adults and children 2-18 years old usually consists of two IM doses separated by either 6-12 months (Havrix) or 6-18 months (Vaqta). Immunity after 2 doses of either vaccine lasts at least 20 years and perhaps longer (K Van Herck et al, J Med Virol 2001; 63:1; P Van Damme et al, Lancet 2003; 362:1065). Additional booster doses are not recommended. Second doses given up to 8 years after the first dose have produced protective antibody levels (S Iwarson et al, J Travel Med 2004; 11:120; S Iwarson, Vaccine 2002; 20:2017). Patients who received a first dose of one vaccine will respond to a second dose of the other. In Europe, Vaqta and Havrix are both approved for use in children ≥1 year of age; a three-dose regimen has been used in infants (AE Fiore et al, Pediatr Infect Dis J 2003; 22:354; R Dagan et al, Pediatr Infect Dis J 2000; 19:1045).
Antibodies reach protective levels 2-4 weeks after the first dose. Even when exposure to the disease occurs sooner than 4 weeks after vaccination, the traveler is usually protected because of the relatively long incubation period of hepatitis A (average 28 days). According to the CDC, travelers who need full protection earlier than 4 weeks should also receive immunoglobulin (0.02 mL/kg IM) with the first dose of vaccine. Most Medical Letter consultants, however, no longer give immunoglobulin except to children <2 years of age and pregnant women.

Hepatitis B – Vaccination against hepatitis B (Engerix-B – GlaxoSmithKline; Recombivax HB – Merck) is now a routine pediatric immunization in the US. It is recommended for previously unvaccinated travelers going to highly or moderately endemic areas (Medical Letter 2001; 43:67) if they plan to stay for a long time, return frequently, live among the local population, receive medical or dental care, or undergo cosmetic needle punctures for tattoos or body-piercing. Risk areas include all of Africa and Asia, the Middle East, Southern Europe, the Southern and Western Pacific Islands, tropical South America and the Caribbean. People who might have unprotected sexual contact with new partners should be immunized against hepatitis B whether traveling or not.

Primary immunization usually consists of 3 doses given IM at 0, 1 and 6 months. An accelerated schedule of 3 doses given at 0, 1 and 2 months, followed by a fourth at 12 months, is approved for Engerix-B in the US. Accelerated schedules given at 0, 7 and 21 days plus a fourth dose 12 months after the first or 0, 7 and 14 days plus a fourth dose 6 months after the first can be used if necessary. A 2-dose schedule of Recombivax at 0 and 4-6 months is approved in the US for adolescents 11-15 years old. An interrupted hepatitis B vaccination series does not need to be restarted. A 3-dose series started with one vaccine may be completed with the other. Immunity is believed to be life-long.
Advice for Travelers

for most adults who have completed a primary immunization series, but about 3-5% of adults may not respond to the primary series.

Hepatitis A/B – A combination vaccine containing the same antigenic components as *Engerix-B* and pediatric *Havrix* (*Twinrix* – GlaxoSmithKline) is available for patients ≥18 years old. It is given in 3 doses at 0, 1 and 6 months; at least 2 doses should be given before travel. Accelerated schedules of 0, 1 and 3 weeks with a fourth dose 12 months after the first, or 0, 1 and two weeks with a fourth dose at least 6 months after the first, can be given if necessary but are not FDA-approved (J Zuckerman, Drugs 2003; 63:1779). The combined vaccine can be used to complete an immunization series started with monovalent hepatitis A and B vaccines (B Kallinowski et al, Vaccine 2000; 19:16). *Twinrix Junior* is available in Canada and Europe for children 1-15 years old.

Influenza – Influenza may be a risk to travelers if the virus is circulating among the local population at the travel destination or when tourist groups include travelers from countries where seasonal influenza activity is occurring (TM Uyeki et al, Clin Infect Dis 2003; 36:1095). Influenza vaccine is sometimes available in the US until the end of June. High-risk patients (>65 years old or anyone ≥ 6 months old with certain chronic diseases) from the Northern Hemisphere who travel to the Southern Hemisphere during that region's influenza season (April-September) should consider being immunized on arrival.

Available influenza vaccines do not protect against the highly pathogenic strains of avian influenza A (H5N1) that have caused disease in humans in recent years. The CDC recommends that travelers to countries in Asia with documented outbreaks avoid live poultry markets, farms, and contact with surfaces that appear to be contaminated with poultry feces, and only eat poultry products that are well cooked (Morbid Mortal Wkly Rep MMWR 2004; 53:97). Travelers should
wash their hands frequently with soap and water or use an alcohol-based hand rub.

Japanese encephalitis – Japanese encephalitis is an uncommon but potentially fatal mosquito-borne viral disease that occurs in rural Asia, especially near pig farms and rice paddies. The attack rate in travelers has been very low (DR Shlim and T Solomon, Clin Infect Dis 2002; 35:183). A vaccine is available in the US (*JE-Vax* – Aventis Pasteur) and should be considered for travelers >1 year old who expect a long stay (usually considered >4 weeks) in rural areas or heavy exposure to mosquitoes (such as adventure travelers), particularly during the rainy season.

Three doses are given over 2 to (preferably) 4 weeks. Allergic reactions including urticaria and angioedema, local injection-site reactions, and mild systemic adverse effects such as fever, headache and myalgias occur in up to 20% of patients. The last dose should be given at least 10 days before departure due to the unpredictable allergic adverse effects. The duration of immunity is unknown; a booster can be given after 24 months.

Measles – Adults born after 1956 who have not received 2 doses of live measles vaccine (not the killed vaccine that was commonly used in the 1960s) after their first birthday and do not have a physician-documented history of infection or laboratory evidence of immunity should receive a single dose of measles or measles-mumps-rubella (MMR) vaccine before traveling. Both are attenuated live-virus vaccines.

Children ≥12 months old should receive 2 doses of MMR vaccine at least 28 days apart before traveling to countries where measles is endemic. Children 6-11 months old should receive 1 dose before traveling, but will still need two subsequent doses for routine immunization, one at 12-15 months and one at 4-6 years.
Advice for Travelers

Meningococcal disease – Meningococcal vaccine is recommended for adults and children >2 years old who are traveling to areas where epidemics are occurring, or to the "meningitis belt" (semi-arid areas of sub-Saharan Africa extending from Senegal and Guinea eastward to Ethiopia) from December to June (ZA Memish, Clin Infect Dis 2002; 34:84). Saudi Arabia requires a certificate of immunization for pilgrims during the Hajj. Immunization should also be considered for travelers who will be living in a dormitory or refugee camp, or working in a health care setting (A Wilder-Smith and Z Memish, Int J Antimicrob Agents 2003; 21:102).

A quadrivalent single-dose meningococcal polysaccharide vaccine (*Menomune* – Aventis Pasteur) is available against *Neisseria meningitidis* serogroups A, C, Y, and W135. The duration of immunity is at least 3 years; it may be shorter in children <4 years old. Conjugate vaccines against serogroups A and C available outside the US may be more effective in children <2 years old. [*Menactra*, a conjugated quadrivalent meningococcal vaccine was approved by the FDA after the publication of this article. *The Medical Letter* has reviewed *Menactra*. See page 227.]

Polio – Adults who have not previously been immunized against polio should receive a primary series of inactivated polio vaccine (IPV) if traveling to areas where polio is endemic (Africa and the Indian Subcontinent) or to areas with documented outbreaks. Previously unimmunized children should also receive a primary series of IPV. If protection is needed within 4 weeks, a single dose of IPV is recommended. Travelers to risk areas who have previously completed a primary series and have never had a booster should receive a booster dose of IPV.

Rabies – Rabies is highly prevalent in Africa, India, Asia and parts of Latin America, but the risk to travelers is low. Pre-exposure immunization
Advice for Travelers

against rabies is recommended for travelers with an occupational risk of exposure, for those planning extended stays in endemic areas, especially children, and for outdoor-adventure travelers going to rural destinations in endemic areas (H Wilde et al, Clin Infect Dis 2003; 37:96). The 2 vaccines available in the US (Imovax – Aventis Pasteur; RabAvert – Chiron) are both given at 0, 7 and 21-28 days. After a bite or skin-penetrating scratch from a potentially rabid animal, patients should promptly receive 2 additional doses. Without preexposure immunization, treatment requires rabies immune globulin and 5 doses (over 28 days) of an approved vaccine, both frequently unavailable in developing countries.

Tetanus and Diphtheria – Everyone who has had a primary series as a child should receive a tetanus-diphtheria toxoid (Td) booster injection once every 10 years. Before traveling to areas with endemic diphtheria, children should complete a primary series (3 doses) of a diphtheria-toxoid-containing vaccine.

Tick-Borne Encephalitis (TBE) – TBE occurs in Scandinavia, Western and Central Europe and countries of the former USSR, mainly in rural forested areas. Risk is greatest from April to August (U Dumpis et al, Clin Infect Dis 1999; 28:882). Immunization is recommended only for travelers who will spend extensive time outdoors in rural areas. The vaccine, which is not approved in the US, is usually given in 3 doses over 9-12 months, but can be given over as few as 2 or 3 weeks, and is available in Europe (Encepur – Chiron; FSME-Immun Inject – Baxter AG). It can be obtained in Canada through the Emergency Drug Release Program by contacting the Special Access Programme, Health Protection Branch (613-941-2108).

Typhoid – Typhoid vaccine is recommended for travelers to developing countries in Central and South America, Africa and Asia, especially if they plan a long stay or may be living in unhygienic conditions. A
Advice for Travelers

purified capsular polysaccharide parenteral vaccine (*Typhim Vi* – Aventis Pasteur) for adults and children ≥ 2 years old is given as a single IM dose at least 2 weeks before departure. A booster is recommended every 2 years.

A live-attenuated oral vaccine (*Vivotif Berna* – Berna Products) is available for adults and children ≥ 6 years old. It is taken every other day as a single capsule (at least 1 hour before eating) for a total of 4 capsules, beginning no later than 2 weeks before departure; it protects for about 5 years. Gastrointestinal disturbance is common (EM Begier et al, Clin Infect Dis 2004; 38:771). Antibiotics should be avoided from the day before the first capsule until 2 days after the last.

Yellow Fever – Yellow fever vaccine, a single-dose attenuated live virus vaccine prepared in eggs, should be given at least 10 days before travel to endemic areas, which include much of tropical South America and sub-Saharan Africa between 15°N and 15°S (TP Monath and MS Cetron, Clin Infect Dis 2002; 34:1369). Some countries in Africa require an International Certificate of Vaccination against yellow fever from all entering travelers; other countries in Africa, South America and Asia require evidence of vaccination from travelers coming from or traveling through endemic or infected areas. The vaccine is available in the US only at centers certified by state health departments (directory available at www2.ncid.cdc.gov/travel/yellowfever). Boosters are given every 10 years, but immunity probably lasts much longer.

Yellow fever vaccine is contraindicated in travelers with egg allergy. Severe systemic illness, including fatal organ failure, has been associated rarely with the vaccine; the risk appears to be greater in first-time recipients, especially those >65 years old (MMWR Recomm Rep 2002; 51 RR-17:1; Morbid Mortal Weekly Rep MMWR 2002; 51:989). The vaccine should be avoided if possible in infants <9
months old and is contraindicated in infants <6 months old because of the risk of vaccine-induced encephalitis. If other live vaccines (measles, MMR) are not administered simultaneously with yellow fever vaccine, administration should be separated by one month to avoid a diminished immune response to the vaccines.

SOME OTHER INFECTIONS

Dengue – Dengue fever is a viral disease transmitted by mosquito bites that occurs worldwide in tropical and subtropical areas, including cities (RV Gibbons and DW Vaughn, BMJ 2002; 324:1563). Major epidemics have occurred in recent years in Southeast Asia, sub-Saharan Africa, and Central and South America. Travelers from the US and Europe have contracted the disease while vacationing at popular tourist destinations in the Caribbean, Mexico and Southern Asia (C Stephan et al, Infection 2002; 30:225). Prevention of mosquito bites during the day, particularly in early morning and late afternoon, is the only way to protect against dengue fever; no vaccine is currently available.

Leptospirosis – Leptospirosis, a bacterial disease that occurs in many domestic and wild animals, is endemic worldwide, but the highest incidence is in tropical and subtropical areas. Transmission to humans usually occurs through contact with water or damp soil contaminated by the urine of infected animals (AR Bharti et al, Lancet Infect Dis 2003; 3:757). Travelers at increased risk, such as those who engage in recreational water activities, hikers, bikers or adventure travelers should consider chemoprophylaxis with doxycycline 200 mg orally once a week, beginning 1-2 days before and continuing throughout the period of exposure. No human vaccine is available in the US.

SARS – After travelers' diarrhea, respiratory infection is the most common infectious disease affecting travelers (K Leder et al, Clin
Advice for Travelers

Infect Dis 2003; 36:399). In the winter of 2003 a new coronavirus caused Severe Acute Respiratory Syndrome (SARS) and disrupted travel to much of Southeast Asia and Canada (F Fleck, Bull WHO 2003; 81:625). The CDC recommends that travelers to areas reporting current SARS cases avoid places where the disease is likely to be transmitted: health care settings and markets selling live animals (particularly civet cats). Travelers should also wash their hands frequently and monitor their health for 10 days after leaving a SARS area. If fever or respiratory illness develops, they should be seen by a physician, who should be alerted to a potential SARS exposure before the visit (www.cdc.gov/ncidod/sars/travel_advice.htm).

Sexually-transmitted diseases – Many travelers have new sexual contacts during their journeys and are at increased risk for acquiring sexually transmitted diseases including HIV, particularly when visiting developing countries with a high incidence of STDs in the local population (ZA Memish and AO Osoba, Int J Antimicrob Agents 2003; 21:131). Hepatitis B is the only STD for which a vaccine is available. Travelers should be aware of this risk and of safe sex practices for disease prevention; use of condoms should be emphasized.

NON-INFECTIONOUS RISKS OF TRAVEL

Many non-infectious risks are associated with travel. Injuries, particularly traffic accidents and drowning, which account for the majority of travel-related deaths, and sunburn occur in many travelers.

Altitude – Rapid exposure to altitudes >10,000 feet (3000 meters) can cause acute mountain sickness (headache, fatigue, nausea, insomnia, dyspnea) in 30-40% of travelers; pulmonary and cerebral edema are less common (1%) (PW Barry and AJ Pollard, BMJ 2003; 326:915). Sleeping altitude appears to be especially important in determining whether symptoms
develop. The most effective preventive measure is acclimatization by a 2- to 4-day stay at intermediate altitude (6000-8000 feet) and gradual ascent to higher elevations.

Acetazolamide (Diamox, and others), a carbonic anhydrase inhibitor, taken in a dosage of 125-250 mg b.i.d. (or 500 mg daily with the slow-release formulation Diamox Sequels) beginning 1-2 days before ascent and continuing at high altitude for 48 hours or longer, decreases the incidence and severity of acute mountain sickness (B Basnyat et al, High Alt Med Biol 2003; 4:45). The recommended dose for children is 5 mg/kg/d in 2 or 3 divided doses. Travelers who are allergic to sulfa drugs should not take acetazolamide. Symptoms can be treated after they occur by descent to a lower altitude or by giving supplemental oxygen, especially during sleep. When descent is impossible, dexamethasone (Decadron, and others) 4 mg q6h, acetazolamide 250-500 mg q12h, or the two together, may be helpful (P Hackett and RC Roach, N Engl J Med 2001; 345:107).

Venous Thromboembolism – Prolonged immobilization (>8 hours) increases the risk of lower extremity deep vein thrombosis (DVT), particularly in travelers with risk factors for thrombosis (T Schwarz et al, Arch Intern Med 2003; 163:2759; I Martinelli et al, Arch Intern Med 2003; 163:2771). Nevertheless, flight-related symptomatic pulmonary embolism is rare (E Perez-Rodriguez et al, Arch Intern Med 2003; 163:2766; SR Hertzberg et al, Vasc Med 2003; 8:21). To minimize the risk, travelers should be advised to walk around or exercise while sitting by flexing/extending ankles and knees, to drink plenty of fluids and to avoid alcohol. Compression stockings can decrease the risk of asymptomatic DVT (JH Scurr et al, Lancet 2001; 357:1485). One study found that giving a single dose of a low-molecular-weight heparin or aspirin as prophylaxis to travelers at high risk (past history of thrombosis, obesity, malignancy, increased platelets) reduced the incidence of DVT (MR Cesarone et al, Angiology 2002; 53:1), but there is little evidence supporting this approach.
Advice for Travelers

Jet Lag – Disturbance of body and environmental rhythms resulting from a rapid change in time zones gives rise to jet lag, which is characterized by insomnia, decreased quality of sleep, loss of concentration, and irritability. It is usually more severe after eastward travel. A variety of interventions have been tried, but none is proven to be effective. Shifting daily activities to correspond to the time zone of the destination country before arrival, along with taking short naps, remaining well hydrated, avoiding alcohol and pursuing activities in sunlight on arrival, might help. The dietary supplement melatonin (5 mg started the night before travel and continued for 1-5 days after arrival) has been reported to facilitate the shift of the sleep-wake cycle and decrease symptoms in some patients (A Herxheimer and KJ Petrie, Cochrane Database Syst Rev 2002; 2:CD001520). As a dietary supplement in the US, however, its purity and potency are suspect (Medical Letter 2002; 44:84). Zolpidem (Ambien) started the first night after travel and taken for three nights may also be helpful (AO Jamieson et al, Sleep Med 2001; 2:423).

Motion Sickness – The pathogenesis of motion sickness is poorly understood. The prescription cholinergic blocker scopolamine in a patch or oral formulation can decrease symptoms. **Transderm Scop** is applied to the skin behind the ear 6-8 hours before exposure and changed every three days. The oral 8-hour tablet (**Scopace**) is taken 1 hour before exposure. Oral promethazine (**Phenergan**, and others) is a highly sedating alternative (CR Sherman, J Travel Med 2002; 9:251). Over-the-counter drugs such as dimenhydrinate (**Dramamine**, and others) or meclizine (**Bonine**, and others) are less effective, but may be helpful for milder symptoms.
The FDA has approved a conjugated polysaccharide vaccine, *Menactra* (Sanofi-Pasteur), for protection against disease caused by *Neisseria meningitidis* in people 11-55 years old, and the manufacturer has applied for approval for use in children 2 to 10 years old. An unconjugated meningococcal polysaccharide vaccine (*Menomune* – Sanofi-Pasteur) has been licensed in the US since 1981.

THE DISEASE — About 2000 cases of meningococcal disease occur in the US each year. The case fatality rate is more than 10% for meningitis and up to 40% for meningococcemia. Among survivors, about 20% are left with permanent disabilities such as hearing loss, neurological damage and limb amputations. Rates of meningococcal disease are highest in infancy, but a second peak occurs in adolescence and young adulthood. About 3% of cases occur in college students, especially freshmen living in dormitories.1

SEROGROUPS — Five major serogroups of *N. meningitidis*, A, B, C, Y and W-135, cause most human infection. Serogroup A is the leading cause of disease in the “meningitis belt” across sub-Saharan Africa, but now occurs only rarely in the US. Serogroups B, C and Y are major causes of endemic disease in the US; serogroup B causes about one third of cases overall and more than half of cases in infants. In the US during the 1990s, the frequency of local outbreaks of meningococcal infection and the proportion of infection caused by serogroup C increased among 15 to 24 year olds, and these outbreaks were associated with a fatality rate of about 20%.2 Serogroup W-135 is an uncommon cause of meningococcal disease in the US, but has caused outbreaks among pilgrims to Mecca during the Hajj and regional outbreaks throughout the world.3,4

THE NEW VACCINE — *Menactra* contains 4 mcg of meningococcal polysaccharide from each of 4 serogroups (A, C, Y and W-135) conju-
Menactra: A Meningococcal Conjugate Vaccine

gated to diphtheria toxoid protein. Polysaccharides stimulate B-cells to produce antibodies, but optimal immune responses, particularly in young infants, require that the antigen be recognized by T-cells. Coupling polysaccharides to proteins provokes a T-cell dependent response that improves immunogenicity. Neither Menactra nor Menomune provides protection against serogroup B, which does not have an immunogenic polysaccharide capsule.

IMMUNOGENICITY — The safety and immunogenicity of the new vaccine was evaluated in two unpublished studies that are summarized in the package insert. Among 1280 adults (18-55 years old) and 423 adolescents (11-18 years old) who received Menactra, seroconversion rates for serogroups A, C, Y and W-135 measured by serum bactericidal antibody assay were 100%, 99%, 91% and 97% in the adults and 100%, 99%, 98% and 99% in the adolescents. These rates were about the same with Menomune. A study of US children 2-10 years old who received either Menomune or Menactra found that antibody titers were higher for all 4 serogroups in the children who received Menactra.

EFFICACY — No controlled clinical trials have been conducted with Menactra. FDA approval was based on its immunogenicity and the effectiveness of other vaccines in preventing meningococcal disease. The meningococcal outbreaks that were once frequent in US military recruits have become rare since the military began routine immunization of recruits with meningococcal (unconjugated) vaccine. Unconjugated and conjugated (available in Europe) meningococcal vaccines have both been effective in preventing outbreaks caused by serogroup C. In the UK, after 80% of children less than 18 years old were vaccinated within 1 year, the annual number of deaths from serogroup C infection fell from 67 in 1999 to 5 in 2001; in the unvaccinated population >20 years old, there was no decrease in the number of deaths. Among younger children, the number of cases of disease declined even among the unvaccinated, suggesting that high antibody levels induced
Menactra: A Meningococcal Conjugate Vaccine

by the vaccine led to decreased nasopharyngeal carriage and herd immunity.9-11

USE IN YOUNGER CHILDREN — Studies in children <3 years old who were immunized with *Menactra* have found inconsistent immunogenicity.12,13 Studies from the UK, where vaccination with a conjugated meningococcal serogroup C vaccine is routine at 2, 3 and 4 months of age, have found that children have little protective antibody left at age 4, but show a rapid response to a booster dose.14,15

ADVERSE EFFECTS — The most common adverse reactions to *Menactra* include headache, fatigue and malaise, in addition to pain, redness and induration at the site of injection. The rates of these reactions are higher than with *Menomune*, but similar to those with tetanus toxoid. *Menactra* is contraindicated in persons with known hypersensitivity to any component of the vaccine or to latex, which is used in the vial stopper.

RECOMMENDATIONS — In February 2005, the CDC’s Advisory Committee on Immunization Practices (ACIP) recommended routine vaccination with *Menactra* for pre-adolescent children aged 11 or 12, and “catch-up” vaccination for previously unvaccinated teens entering high school and college freshmen.16 Other groups for whom the vaccine is recommended as a priority are microbiologists with frequent exposure to *N. meningitidis*, travelers to areas of the world where disease is hyperendemic, and persons with splenectomy or functional asplenia. The old unconjugated vaccine is effective and can still be used in all of these groups.1 Revaccination could be considered for persons previously vaccinated with *Menomune*. Recommendations for use of the new vaccine are under review by the American Academy of Pediatrics and American Academy of Family Physicians.

DOSAGE, COST AND ADMINISTRATION — *Menactra* is given as a single intramuscular injection. The need for and timing of booster doses is unknown. According to the manufacturer, a single dose of the new vaccine
Menactra: A Meningococcal Conjugate Vaccine

will cost $82.00, compared to $86.10 for Menomune. An unpublished study summarized in the package insert found that when tetanus-diphtheria (Td) vaccine was given with Menactra, antibody responses to Td were similar and those to Menactra were higher than when the vaccines were given separately.

CONCLUSION — Based on immunogenicity studies and experience with other vaccines, the new meningococcal conjugate vaccine (Menactra) should be highly effective in preventing meningococcal disease in older children, adolescents and adults. The duration of protection with the new vaccine is unknown. Immunogenicity has been inconsistent in infants and toddlers.

Menactra: A Meningococcal Conjugate Vaccine

Rifaximin (Xifaxan) for Travelers’ Diarrhea

Rifaximin (Xifaxan – Salix), a non-absorbed oral antibiotic derived from rifampin (Rifadin, and others), has been approved by the FDA for treatment of travelers’ diarrhea caused by noninvasive strains of Escherichia coli in patients 12 years of age or older. It has been available in Europe since 1987.

PHARMACOLOGY

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Rifamycin antimicrobial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of action</td>
<td>Inhibition of bacterial RNA synthesis</td>
</tr>
<tr>
<td>Formulation</td>
<td>200-mg tablets</td>
</tr>
<tr>
<td>Peak plasma levels</td>
<td><0.4% absorbed from GI tract</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Not metabolized</td>
</tr>
<tr>
<td>Excretion</td>
<td>97% excreted unchanged in feces</td>
</tr>
</tbody>
</table>

TREATMENT OF TRAVELERS’ DIARRHEA — The most common cause of travelers’ diarrhea, usually a self-limited illness lasting several days, is infection with noninvasive enterotoxigenic (ETEC) or enteroaggregative (EAEC) strains of *E. coli*. Less common pathogens include *Shigella, Salmonella, Campylobacter, Aeromonas*, viruses and parasites.

For mild to moderate diarrhea, loperamide (Imodium, and others), an over-the-counter antiperistaltic agent, or bismuth subsalicylate (Pepto-Bismol, and others) usually relieves symptoms in less than 24 hours. Packets of oral rehydration salts mixed in potable water can help maintain electrolyte balance.

When diarrhea is severe or associated with fever or bloody stools, self-treatment with a 3-day course of ciprofloxacin, levofloxacin, norfloxacin, or ofloxacin is usually recommended. One- and two-day courses may also be effective. dispensable. Azithromycin (Zithromax) is an alternative for travelers to areas with fluoroquinolone-resistant *Campylobacter*, such as Thailand, and for pregnant women, children and those who do not respond to a fluoroquinolone within 48 hours.
Rifaximin (Xifaxan) for Travelers’ Diarrhea

ANTIBACTERIAL ACTIVITY — Rifaximin reaches high concentrations in the intestinal tract and is active in vitro against a broad range of enteropathogens, including ETEC, EAEC, *Shigella* spp. and *Salmonella* spp. It is much less active against *Campylobacter jejuni* and *Yersinia enterocolitica*.²

CLINICAL STUDIES — The 2 published clinical trials summarized in the table were conducted in travelers with diarrhea mostly caused by *E. coli*.³⁴ One unpublished clinical trial summarized in the package insert found rifaximin ineffective for many patients with fever and/or blood in the stool, and for those who had *C. jejuni* isolated as the sole pathogen. Another unpublished study described in the package insert found that among 13 volunteers challenged with *Shigella flexneri* and treated with rifaximin after developing diarrhea, 8 required rescue treatment with ciprofloxacin because they did not respond, developed severe dysentery or relapsed. A study available only as an abstract that compared rifaximin 200 mg once, twice or 3 times a day to placebo for prevention of diarrhea in 209 travelers to Mexico found that 82%, 75% and 85% of travelers receiving rifaximin remained diarrhea-free after 2 weeks compared to 42% with placebo.⁵

ADVERSE EFFECTS — No severe adverse effects were observed in clinical trials with rifaximin. There have been a few postmarketing...
Rifaximin (Xifaxan) for Travelers’ Diarrhea

Rifaximin is contraindicated in patients who are allergic to rifamycins. It has not been studied in pregnant women, but was teratogenic when given orally to animals at doses 2 to 33 times the usual human oral dose adjusted for body surface area.

DRUG INTERACTIONS — Rifaximin can induce CYP3A4, but, unlike rifampin, has not caused clinically relevant interactions with drugs metabolized by CYP3A4 such as oral contraceptives and midazolam (Versed).

CONCLUSION — Rifaximin (Xifaxan), a non-absorbed oral antibiotic, was about as effective as ciprofloxacin for treatment of travelers’ diarrhea, mostly caused by *E. coli*. It is not effective against infections associated with fever or blood in the stool or those caused by *Campylobacter jejuni*. Rifaximin has fewer adverse effects and drug interactions than systemic antibiotics, but should not be taken during pregnancy.

Picaridin (KBR 3023), which has been used as an insect repellent for years in Europe and Australia (Autan Repel, and others), is now available in the US in a 7% solution as Cutter Advanced (Spectrum Brands). The US Centers for Disease Control and Prevention (CDC) is recommending it as an alternative to DEET.

DEET — DEET is available in the US in many formulations with concentrations of 5%-40% and 100%; higher concentrations offer complete protection for a longer period of time, but the duration of effectiveness reaches a plateau at a 50% concentration. A long-acting DEET formulation, originally developed for the US Armed Forces (US Army Extended Duration Topical Insect and Arthropod Repellent, EDTIAR) is available in the US as Ultrathon (3M). Ultrathon contains 25% (in aerosol) or 33% (in cream) DEET in a polymer formulation, which prevents loss from the skin surface through absorption and evaporation. Studies have shown that it provides complete protection against mosquitoes for 6-12 hours.

Safety and Acceptability — Despite earlier concerns, toxic and allergic reactions to DEET have been uncommon, and serious adverse effects are rare.¹ Some patients dislike its odor and find it irritating or uncomfortably oily or sticky on the skin. DEET can damage clothes made from synthetic fibers such as spandex or rayon and can also damage leather and plastics on eyeglass frames and watch crystals.

PICARIDIN — Laboratory and field studies documenting the efficacy of picaridin are summarized in the table on page 236. No published data are available on the efficacy of the 7% solution now available in the US. Insect repellents are registered by the Environmental Protection Agency (EPA); they do not require FDA approval.
Picaridin – A New Insect Repellent

Safety and Acceptability – In Australia and in Europe, no serious toxicity has been reported with picaridin. It has shown no evidence of dermal, organ or reproductive toxicity or carcinogenicity in animals, except for some hepatic toxicity in rats at extremely high doses. Unlike DEET, it is odorless, does not feel greasy or sticky, is less likely to irritate the skin, and does not damage plastics or fabrics.

DOSAGE AND COST — The manufacturer recommends spraying picaridin on the skin every 3 to 4 hours. Cutter Advanced (with 7% picaridin) is the only formulation available commercially in the US; a 6-ounce pump-spray bottle can be purchased over the counter for about $4.

CONCLUSION — The 7% picaridin formulation currently sold in the US might be as effective in repelling mosquitoes as low concentrations of DEET, but no data are available. Higher strength products sold in Europe (with 20% picaridin) protect against mosquitoes for up to 8 hours and against ticks for a shorter period of time. If higher concentrations become available in the US, picaridin could replace DEET due to its superior tolerability, but its long-term safety is less well established.

PRINCIPAL ADVERSE EFFECTS OF ANTIMICROBIAL DRUGS

Adverse effects of antimicrobial drugs vary with dosage, duration of administration, concomitant therapy, renal and hepatic function, immune competence, and the age of the patient. The principal adverse effects of antimicrobial agents are listed in the following table. The designation of adverse effects as "frequent," "occasional" or "rare" is based on published reports and on the experience of Medical Letter consultants. Information about adverse interactions between drugs, including probable mechanisms and recommendations for clinical management, are available in the Medical Letter Adverse Drug Interactions Program.

ABACAVIR (Ziagen)
- **Frequent:** hypersensitivity reaction with fever, GI or respiratory symptoms and rash
- **Occasional:** arthralgias; anemia; lactic acidosis
- **Rare:** anaphylaxis; pancreatitis; hyperglycemia

ACYCLOVIR (Zovirax, others)
- **Frequent:** local irritation at infusion site
- **Occasional:** local reactions with topical use; headache, rash, nausea, diarrhea, vertigo, and arthralgias with oral use; decreased renal function sometimes progressing to renal failure; metabolic encephalopathy; bone marrow depression; abnormal hepatic function in immunocompromised patients
- **Rare:** lethargy or agitation; tremor, disorientation; hallucinations; transient hemiparesis

ADEFOVIR (Hepsera)
- **Frequent:** asthenia; headache; abdominal pain
- **Occasional:** hepatitis exacerbation after drug discontinuation
- **Rare:** increased serum creatinine; renal tubular dysfunction with high doses (>60 mg/d)

ALBENDAZOLE (Albenza)
- **Occasional:** abdominal pain; reversible alopecia; increased serum transaminases
- **Rare:** leukopenia; rash; renal toxicity

AMANTADINE (Symmetrel, others)
- **Frequent:** livedo reticularis and ankle edema; insomnia; dizziness; lethargy
- **Occasional:** depression; psychosis; confusion; slurred speech; congestive heart failure; orthostatic hypotension; urinary retention; GI disturbance; rash; visual disturbance; sudden loss of vision; increased seizures in epilepsy
- **Rare:** convulsions; leukopenia; neutropenia; eczematoid dermatitis; oculogyric episodes; photosensitivity

AMIKACIN (Amikin)
- **Occasional:** vestibular damage; renal damage; fever; rash
- **Rare:** auditory damage; CNS reactions; blurred vision; nausea; vomiting; neuromuscular blockade and apnea, may be reversible with calcium salts; paresthesias; hypotension

AMINOSALICYLIC ACID (Paser)
- **Frequent:** GI disturbance
- **Occasional:** allergic reactions; liver damage; renal irritation; blood dyscrasias; thyroid enlargement; malabsorption syndrome
- **Rare:** acidosis; hypokalemia; encephalopathy; vasculitis; hypoglycemia in diabetics
AMoxicillin — See Penicillins

AMoxicillin/Clavulanic Acid — See Penicillins

Amphotericin B Deoxycholate (Fungizone, others)
Frequent: renal damage; hypokalemia; thrombophlebitis at site of peripheral vein infusion; anorexia; headache; nausea; weight loss; bone marrow suppression with reversible decline in hematocrit; chills, fever, vomiting during infusion, possibly with delirium, hypotension or hypertension, wheezing, and hypoxemia, especially in cardiac or pulmonary disease
Occasional: hypomagnesemia; normocytic, normochromic anemia
Rare: hemorrhagic gastroenteritis; blood dyscrasias; rash; blurred vision peripheral neuropathy; convulsions; anaphylaxis; arrhythmias; acute liver failure; reversible nephrogenic diabetes insipidus; hearing loss; acute pulmonary edema; spinal cord damage with intrathecal use

Amphotericin B Lipid Formulations (Ambisone, Abelcet, Amphotec) — See page 121.

Ampicillin — See Penicillins

Ampicillin/Sulbactam — See Penicillins

Amrenavir (Agenerase)
Frequent: GI disturbance; oral and perioral paresthesias; rash; hypersensitivity with fever
Occasional: hyperglycemia; increased aminotransferase activity; hyperlipidemia; abnormal fat distribution
Rare: severe rash including Stevens-Johnson syndrome; hemolytic anemia

Artemether (Artemam)
Occasional: neurological toxicity; possible increase in length of coma; increased convulsions; prolongation of QTc interval

Artesunate
Occasional: ataxia; slurred speech; neurological toxicity; possible increase in length of coma; increased convulsions; prolongation of QTc interval

Atazanavir (Reyataz)
Frequent: hyperbilirubinemia; rash; nausea
Occasional: increased cholesterol and triglycerides; depression; dizziness; fatigue; fever; headache
Rare: insomnia; peripheral neuropathy; PR prolongation, heart block; angioedema; alopecia; Stevens-Johnson syndrome; gout; myasthenia, hepatitis; diabetes; pancreatitis

Atoquone (Mepron, Malarone [with proguanil])
Frequent: rash; nausea
Occasional: increased cholesterol and triglycerides; depression; dizziness; vaginitis
Rare: angioedema; cholestatic jaundice; photosensitivity; reversible dose-related hearing loss

Azithromycin (Zithromax)
Occasional: nausea; diarrhea; abdominal pain; headache; dizziness; vaginitis
Rare: angioedema; cholestatic jaundice; photosensitivity; reversible dose-related hearing loss

AZT — See Zidovudine

Aztreonam (Azactam)
Occasional: local reaction at injection site; rash; diarrhea; nausea; vomiting; increased aminotransferases
Rare: thrombocytopenia; pseudomembranous colitis

Bacitracin — many manufacturers
Frequent: nephrotoxicity; GI disturbance
Occasional: rash; blood dyscrasias
Rare: anaphylaxis
Principal Adverse Effects of Antimicrobial Drugs

BENZNIDAZOLE (Rochagan)

Frequent: allergic rash; dose-dependent polyneuropathy; GI disturbance; psychic disturbances

BITHIONOL (Bitin)

Frequent: photosensitivity reactions; vomiting; diarrhea; abdominal pain; urticaria

Rare: leukopenia; toxic hepatitis

CAPREOMYCIN (Capastat)

Occasional: renal damage; eighth nerve damage; hypokalemia and other electrolyte abnormalities; pain, induration, excessive bleeding, sterile abscess at injection site

Rare: allergic reactions; leukocytosis, leukopenia; neuromuscular blockade and apnea with large IV doses, reversed by neostigmine

CARBENICILLIN — See Penicillins

CASPOFUNGIN (Cancidas)

Occasional: fever; rash; increased aminotransferases; GI disturbance; facial flushing

Rare: anaphylaxis

CEPHALOSPORINS

(cefaclor - Cefclor; cefadroxil - Duricef, others; cefamandole - Mandol; cefazolin - Ancef, others; cefdinir - Omnicef; cefditoren pivoxil - Spectracef; cefepime - Maxipime; cefixime - Suprax; cefonicid - Monocid; cefoperazone - Cefobid; cefotaxime - Cloran; cefotetan - Cefotan; cefoxitin - Mefoxin; cefpodoxime - Vantin; cefprozil - Cefzil; ceftazidime - Fortaz, Tazidime, Tazicef, Ceptaz; ceftriaxone - Rocephin; cefuroxime - Kefurox, Zinacef; cefuroxime axetil - Ceftin; cephalixin - Keflex, others; cephradin - Cefadyl, others; cephapirin - Velosef, others; loracarbef - Lorabid

Frequent: thrombophlebitis with IV use; serum-sickness-like reaction with prolonged parenteral administration; moderate to severe diarrhea, especially with cefoperazone and cefixime

Occasional: allergic reactions, rarely anaphylactic; pain at injection site; GI disturbance; hypoprothrombinemia, hemorrhage with cefamandole, cefoperazone or cefotetan; rash and arthritis ("serum-sickness") with cefaclor or cefprozil, especially in children; cholelithiasis with ceftriaxone; vaginal candidiasis (especially with cefdinir); carnitine deficiency with prolonged use of cefditoren

Rare: hemolytic anemia; hepatic dysfunction; blood dyscrasias; renal damage; acute interstitial nephritis; pseudomembranous colitis; seizures; toxic epidermal necrolysis

CHLORAMPHENICOL (Chloromycetin, others)

Occasional: blood dyscrasias; gray syndrome (cardiovascular collapse); GI disturbance

Rare: fatal aplastic anemia, even with eye drops or ointment; allergic and febrile reactions; peripheral neuropathy; optic neuritis and other CNS injury; pseudomembranous colitis

CHLOROQUINE HCL and CHLOROQUINE PHOSPHATE (Aralen, others)

Occasional: pruritus; vomiting; headache; confusion; depigmentation of hair; skin eruptions; corneal opacity; weight loss; partial alopecia; extraocular muscle palsies; exacerbation of psoriasis, eczema, and other exfoliative dermatoses; myalgias; photophobia

Rare: irreversible retinal injury (especially when total dosage exceeds 100 grams); discoloration of nails and mucus membranes; nerve-type deafness; peripheral neuropathy and myopathy; heart block; blood dyscrasias; hematemesis

CIDOFOVIR (Vistide)

Frequent: nephrotoxicity; ocular hypotony; neutropenia
Principal Adverse Effects of Antimicrobial Drugs

Occasional: metabolic acidosis; uveitis; Fanconi syndrome

Rare: suicide; seizures; coma

CINOXACIN *(Cinobac, others)*
— Probably same as nalidixic acid

CIPROFLOXACIN *(Cipro*) — See Fluoroquinolones

CLARITHROMYCIN *(Biaxin)*
Occasional: nausea; diarrhea; abdominal pain; abnormal taste; headache; dizziness
Rare: reversible dose-related hearing loss; pseudomembranous colitis; pancreatitis; torsades de pointes

CLINDAMYCIN *(Cleocin, others)*
Frequent: diarrhea; allergic reactions
Occasional: pseudomembranous colitis; sometimes severe, can occur even with topical use
Rare: blood dyscrasias; esophageal ulceration; hepatotoxicity; arrhythmia due to QTc prolongation

CLOFAZIMINE *(Lamprene)*
Frequent: ichthyosis; pigmentation of skin, cornea and retina; urine discoloration; dryness and irritation of eyes; GI disturbance
Occasional: headache; retinal degeneration
Rare: splenic infarction, bowel obstruction, and GI bleeding with high doses

CLOXACILLIN — See Penicillins

COLISTIMETHATE — See Polymyxins

CROTAMITON *(Eurax)*

CYCLOSERINE *(Seromycin, others)*
Frequent: anxiety; depression; confusion; disorientation; paranoia; hallucinations; somnolence; headache
Occasional: peripheral neuropathy; liver damage; malabsorption syndrome; folate deficiency

DAPSONE
Frequent: rash; transient headache; GI irritation; anorexia; infectious mononucleosis-like syndrome
Occasional: cyanosis due to methemoglobinemia and sulfhemoglobinemia; other blood dyscrasias, including hemolytic anemia; nephrotic syndrome; liver damage; peripheral neuropathy; hypersensitivity reactions; increased risk of lepra reactions; insomnia; irritability; uncoordinated speech; agitation; acute psychosis
Rare: renal papillary necrosis; severe hypoalbuminemia; epidermal necrolysis; optic atrophy; agranulocytosis; neonatal hyperbilirubinemia after use in pregnancy

DAPTOMYCIN *(Cubicin)*
Occasional: GI disturbances; rash, injection site reaction; fever; headache; insomnia; dizziness
Rare: increased CPK; eosinophilia

DELA VIRDINE *(Rescriptor)* — Similar to nevirapine, but rash may be less severe and hepatotoxicity is less common

DEMECLOCYCLINE — See Tetracyclines

DICLOXACILLIN — See Penicillins

DIDANOSINE *(ddI; Videx)*
Frequent: peripheral neuropathy; diarrhea; nausea; vomiting; abdominal pain
Occasional: pancreatitis; hyperuricemia; increased aminotransferases; hypokalemia; headache; constipation; loss of taste; fever; rash; lactic acidosis; retinal degeneration
Rare: hepatic failure; retinal atrophy in children
Principal Adverse Effects of Antimicrobial Drugs

DIETHYLCARBAMAZINE CITRATE (*Hetrazan*)
Frequent: severe allergic or febrile reactions in patients with microfilaria in the blood or the skin; GI disturbance
Rare: encephalopathy

ENFUVIRTIDE (*Fuzeon*)
Frequent: injection site reactions; insomnia; depression; increased triglycerides; neuropathy
Occasional: rash; eosinophilia
Rare: hypersensitivity reactions; increased bacterial pneumonias

DILOXANIDE FURUOATE (*Furamide*)
Frequent: flatulence
Occasional: nausea; vomiting; diarrhea
Rare: diplopia; dizziness; urticaria; pruritus

DINFUVIRTIDE (*Dynabac*)
Similar to erythromycin —

DOXYCYCLINE — See Tetracyclines

EFAVIRENZ (*Sustiva*)
Frequent: dizziness; headache; inability to concentrate; insomnia and somnolence; rash
Occasional: vivid dreams; nightmares; hallucinations; hypersensitivity reaction with fever, GI or respiratory symptoms and rash; Stevens-Johnson syndrome in children; increased cholesterol and triglycerides
Rare: pancreatitis; peripheral neuropathy; psychiatric symptoms; photosensitivity reactions; gynecomastia

EFLOXINITHINE
(Difluoromethylornithine, DFMO, *Ornidyl*)
Frequent: anemia; leukopenia
Occasional: diarrhea; thrombocytopenia; seizures
Rare: hearing loss

EMTRICITABINE (*FTC, Emtriva*)
Frequent: headache; dizziness; insomnia; rash; GI disturbance; weakness; increased CPK
Occasional: dream disturbances; increased triglycerides; hyperpigmentation of palms and soles; lactic acidosis; hepatomegaly with fatty liver; exacerbation of hepatitis B with drug discontinuation

ENOXACIN — See Fluoroquinolones

ENTECA VIR (*Baraclude*)
Occasional: headache; fatigue; nausea; dizziness; hepatitis exacerbation after drug discontinuation

ERTAPENEM (*Invanz*)
Occasional: phlebitis; nausea; vomiting; diarrhea
Rare: seizures

ERYTHROMYCIN (*Ery-Tab, others*)
Frequent: GI disturbance
Occasional: stomatitis; cholestatic hepatitis especially with erythromycin estolate in adults
Rare: allergic reactions, including severe respiratory distress; pseudomembranous colitis; hemolytic anemia; hepatotoxicity; transient hearing loss with high doses, prolonged use, or in patients with renal insufficiency; ventricular arrhythmias including torsades de pointes with IV infusion; aggravation of myasthenia gravis; hypothermia; pancreatitis; hypertrophic pyloric stenosis following treatment of infants

ETHAMBUTOL (*Myambutol*)
Occasional: optic neuritis; allergic reactions; GI disturbance; mental confusion; precipitation of acute gout
Rare: peripheral neuritis; possible renal damage; thrombocytopenia; toxic epidermal necrolysis; lichenoid skin eruption

ETHIONAMIDE (*Trecator-SC*)
Frequent: GI disturbance
Occasional: liver damage; CNS disturbance, including peripheral neuropathy; allergic reactions; gynecomastia; depres-
sion; myalgias; hypotension

Rare: hypothyroidism; optic neuritis; arthritis; impotence

FAMCICLOVIR (Famvir)
Occasional: headache; nausea; diarrhea

FLUCONAZOLE (Diflucan)
Occasional: nausea; vomiting; diarrhea; abdominal pain; headache; rash; increased aminotransferases

Rare: severe hepatic toxicity; exfoliative dermatitis; anaphylaxis; Stevens-Johnson syndrome; toxic epidermal necrolysis; hair loss

FLUCYTOSINE (Ancobon)
Frequent: blood dyscrasias, including pancytopenia and fatal agranulocytosis; GI disturbance, including severe diarrhea and ulcerative colitis; rash; hepatic dysfunction

Occasional: confusion; hallucinations

Rare: anaphylaxis

FLUOROQUINOLONES
(ciprofloxacin – Cipro; enoxacin Penetrex; gatifloxacin – Tequin; gemo-
floxacin – Factive; levofloxacin – Levaquin; lomefloxacin – Maxaquin; moxifloxacin – Avelox; norfloxacin – Noroxin; ofloxacin – Floxin)

Occasional: nausea; vomiting; abdominal pain; dizziness; headache; tremors; restlessness; confusion; rash; Candida infections of the pharynx and vagina; eosinophilia; neutropenia; increased hepatic enzymes; increased serum creatinine concentration; insomnia; diarrhea; leukopenia; photosensitivity reactions, especially with lomefloxacin; prolongation of QTc interval

Rare: hallucinations; delirium; psychosis; vertigo; paresthesias; blurred vision and photophobia; severe hepatitis; hypoglycemia; seizures; pseudomembranous colitis; interstitial nephritis; vasculitis; possible exacerbation of myasthenia gravis; serum-sickness-like reaction; anaphylaxis; toxic epidermal necrolysis; anemia; tendinitis or tendon rupture; ventricular tachycardia and torsades de pointes; rhabdomyolysis with ofloxacin

FOSAMPRENAVIR (Lexiva)

Frequent: headache; fatigue; rash; GI disturbance

Occasional: depression; increased triglycerides; increased lipase and aminotransferases; perioral numbness or tingling

Rare: neutropenia; Stevens-Johnson syndrome

FOSCARNET (Foscavir)

Frequent: renal dysfunction; anemia; nausea; disturbances of Ca, P, Mg, and K metabolism

Occasional: headache; vomiting; fatigue; genital ulceration; seizures; neuropathy

Rare: Nephrogenic diabetes insipidus; cardiac arrhythmias; hypertension

FOSFOMYCIN (Monurol)

Frequent: diarrhea

Occasional: vaginitis

FURAZOLIDONE (Furoxone)

Frequent: nausea; vomiting

Occasional: allergic reactions, including pulmonary infiltration; hypotension; urticaria; fever; vesicular rash; hypoglycemia; headache

Rare: hemolytic anemia in G-6-PD deficiency and neonates; disulfiram-like reaction with alcohol; MAO-inhibitor interactions; polyneuritis

GANCICLOVIR (Cytovene)

Frequent: neutropenia; thrombocytopenia

Occasional: anemia; fever; rash; abnormal liver function; neurological toxicity; phlebitis

Rare: hypertension; cardiac arrhythmias; nausea; vomiting; abdominal pain; diarrhea; eosinophilia; hypoglycemia; alopecia; pruritus; urticaria; renal toxicity; psychiatric disturbances; seizures
Principal Adverse Effects of Antimicrobial Drugs

GATIFLOXACIN— See Fluoroquinolones

GEMIFLOXACIN — See Fluoroquinolones

GENTAMICIN *(Garamycin, others)*
- **Occasional:** vestibular damage; renal damage; rash
- **Rare:** auditory damage; neuromuscular blockade and apnea, reversible with calcium or neostigmine; disturbed mental function; polyneuropathy; anaphylaxis

GRISEOFULVIN *(Fulvicin-U/F, others)*
- **Occasional:** GI disturbance; allergic and photosensitivity reactions
- **Rare:** proteinuria; blood dyscrasias; mental confusion; paresthesias; exacerbation of lupus; fixed-drug eruption; reversible liver damage; lymphadenopathy; exacerbation of leprosy

HALOFANTRINE *(Halfan)*
- **Occasional:** diarrhea; abdominal pain; pruritus; prolongation of QTc and PR interval
- **Rare:** fatal cardiac arrhythmias

IMIPENEM-CILASTATIN *(Primaxin)*
- **Occasional:** phlebitis; pain at injection site; fever; urticaria; rash; pruritus; nausea, vomiting and transient hypotension during intravenous infusion; diarrhea
- **Rare:** seizures; pseudomembranous colitis

IMIQUIMOD *(Aldara)*
- **Frequent:** local erythema, erosion and excoriation
- **Occasional:** itching, burning and pain

INDINAVIR *(Crixivan)*
- **Frequent:** hyperbilirubinemia; dysuria; kidney stones; flank pain; hematuria; crystalluria
- **Occasional:** pyuria; interstitial nephritis; hemolytic anemia; increased aminotransferases; GI disturbance; reflux esophagitis; glucose intolerance; hyperlipidemia; abnormal fat distribution; increased bleeding in hemophiliacs; paronychia; alopecia; dry skin and mucous membranes
- **Rare:** rash; hyperprolactinemia; cholelithiasis

INTERFERON ALFA *(Alferon N, Infergen, Intron A, Roferon-A, Rebetron with ribavirin; Pegylated interferon alfa 2b – Peg-Intron)*
- **Frequent:** Transient flu-like syndrome; fatigue; anorexia; nausea; diarrhea; rash; dry skin or pruritus; weight loss; change in taste; bone marrow suppression; increased aminotransferases; depression; anxiety; insomnia
- **Occasional:** Paresthesias; alopecia; diaphoresis; reactivation of herpes labialis; hypo- and hyperthyroidism; tinnitus; activation of autoimmune diseases, including diabetes
- **Rare:** Visual disturbance and retinopathy; hypertension; cardiac arrhythmias; renal failure; nephrotic syndrome; hearing loss; capillary leak syndrome with monoclonal gammopathy

IODOQUINOL *(Yodoxin, others)*
- **Occasional:** rash; acne; slight enlargement of the thyroid gland; nausea; diarrhea; cramps; anal pruritus
- **Rare:** optic neuritis, atrophy and loss of vision; peripheral neuropathy after prolonged use in high dosage (for months); iodine sensitivity

ISONIAZID *(Nydradiz, others)*
- **Occasional:** peripheral neuropathy; liver damage, potentially fatal, particularly in patients more than 35 years old; glossitis and GI disturbance; allergic reactions; fever
- **Rare:** blood dyscrasias; red cell aplasia; depression; agitation; auditory and visual hallucinations; paranoia; optic neuritis; hyperglycemia; folate and vitamin B6 deficiency; pellagra-like rash; keratitis; lupus erythematosus-like syndrome; chronic liver injury; cirrhosis; Stevens-Johnson syndrome
Principal Adverse Effects of Antimicrobial Drugs

ITRACONAZOLE *(Sporanox)*
- **Occasional:** nausea; epigastric pain; headache; dizziness; edema; hypokalemia; rash; hepatic toxicity
- **Rare:** congestive heart failure

IVERMECTIN *(Stromectol)*
- **Occasional:** Mazzotti-type reaction seen in onchocerciasis, including fever, pruritus, tender lymph nodes, headache, and joint and bone pain
- **Rare:** hypotension

KANAMYCIN *(Kantrex, others)*
- **Occasional:** eighth-nerve damage affecting mainly hearing that may be irreversible and may not be detected until after therapy has been stopped (most likely with renal impairment); renal damage
- **Rare:** rash; fever; peripheral neuritis; parenteral or intraperitoneal administration may produce neuromuscular blockade and apnea, not reversed by neostigmine or calcium gluconate

KETOCONAZOLE *(Nizoral)*
- **Frequent:** nausea; vomiting
- **Occasional:** decreased testosterone synthesis; gynecomastia; oligospermia and impotence in men; abdominal pain; rash; hepatitis; pruritus; dizziness; constipation; diarrhea; fever and chills; photophobia; headache
- **Rare:** fatal hepatic necrosis; liver injury with jaundice; transient elevated transaminase; severe epigastric burning and pain; may interfere with adrenal function; anaphylaxis

LAMIVUDINE *(3TC; Epivir)*
- **Rare:** headache; nausea; dizziness; nasal symptoms; rash; pancreatitis in children; neuropathy; lactic acidosis

LEVOFLOXACIN — See Fluoroquinolones

LINCOMYCN *(Lincozin, others)*
- **Frequent:** diarrhea, sometimes progressing to severe pseudomembranous colitis

MELARSOPROL *(Mel B)*
- **Frequent:** myocardial damage; albuminuria; hypertension; colic; Herxheimer-type reaction; encephalopa-
Principal Adverse Effects of Antimicrobial Drugs

METHICILLIN—See Penicillins

METRONIDAZOLE (Flagyl, others)
Frequent: nausea; headache; anorexia; metallic taste
Occasional: vomiting; diarrhea; insomnia; weakness; dry mouth; stomatitis; vertigo; tinnitus; paresthesias; rash; dark urine; urethral burning; disulfiram-like reaction with alcohol; candidiasis
Rare: pseudomembranous colitis; leukopenia; pancreatitis; seizures; peripheral neuropathy; encephalopathy; cerebellar syndrome with ataxia, dysarthria and MRI abnormalities

MICAFUNGIN (Mycamine)
Occasional: fever; headache; GI disturbance; leukopenia; phlebitis at injection site; increased aminotransferases
Rare: rash; pruritus; facial swelling; anaphylaxis; hemolysis

MICONAZOLE (Monistat)
Occasional: phlebitis; thrombocytosis; chills; intense, persistent pruritus; rash; vomiting; hypolipidemia; dizziness; blurred vision; local burning and irritation with topical use
Rare: anemia; thrombocytopenia; hyponatremia; renal insufficiency; anaphylaxis; cardiac and respiratory arrest with initial dose

MINOCYCLINE—See Tetracyclines

MOXIFLOXACIN—See Fluoroquinolones

NAFCILLIN—See Penicillins

NALIDIXIC ACID (NegGram, others)
Frequent: GI disturbance; rash; visual disturbance
Occasional: CNS disturbance; acute intracranial hypertension in young children and rarely in adults; photosensitivity reactions, sometimes persistent; convulsions; hyperglycemia
Rare: cholestatic jaundice; blood dyscrasias; fatal immune hemolytic anemia; arthralgia or arthritis; lupus-like syndrome; confusion, depression, excitement, visual hallucinations

NELFINAVIR (Viracept)
Frequent: mild to moderate diarrhea
Occasional: increased aminotransferases; rash; nausea; glucose intolerance; increased bleeding in hemophiliacs; hyperlipidemia; abnormal fat distribution

NEOMYCIN
Occasional: eighth-nerve and renal damage, same as with kanamycin but hearing loss may be more frequent and severe and may occur with oral, intra-articular, irrigant, or topical use; GI disturbance; malabsorption with oral use; contact dermatitis with topical use
Rare: neuromuscular blockade and apnea that may be reversed by intravenous neostigmine or calcium gluconate; pseudomembranous colitis

NEVIRAPINE (Viramune)
Frequent: rash, can progress to Stevens-Johnson syndrome
Occasional: fever; nausea; headache; hepatotoxicity, which can be fatal; vivid dreams

NICLOSAMIDE (Niclocide)
Occasional: nausea; abdominal pain

thy; vomiting; peripheral neuropathy
Rare: shock

MEROPENEM (Merrem)—Similar to imipenem, but may be less likely to cause seizures

METHENAMINE MANDELATE (Mandelamine, others) and
METHENAMINE HIPPURATE (Hiprex, Urex)
Occasional: GI disturbance; dysuria; allergic reactions

246
Principal Adverse Effects of Antimicrobial Drugs

NIFURTIMOX (Lampit)
Frequent: anorexia; vomiting; weight loss; loss of memory; sleep disorders; tremor; paresthesias; weakness; polyneuritis
Rare: convulsions; fever; pulmonary infiltrates and pleural effusion

NITAZOXANIDE (Alinia)
Occasional: GI disturbance; headache
Rare: yellow discoloration of sclera; allergic reactions; increased creatinine; dizziness; flatulence; malaise; salivary gland enlargement

NITROFURANTOIN (Macrodantin, others)
Frequent: GI disturbance; allergic reactions, including pulmonary infiltrates
Occasional: lupus-like syndrome; blood dyscrasias; hemolytic anemia; peripheral neuropathy, sometimes severe; pulmonary fibrosis
Rare: cholestatic jaundice; chronic active hepatitis, sometimes fatal; focal nodular hyperplasia of liver; pancreatitis; trigeminal neuralgia; crystalluria; increased intracranial pressure; lactic acidosis; parotitis; severe hemolytic anemia in G-6-PD deficiency

NORFLOXACIN— See Fluoroquinolones

NYSTATIN (Mycostatin, others)
Occasional: allergic reactions; fixed drug eruption; GI disturbance

OFLOXACIN— See Fluoroquinolones

ORNIDAZOLE (Tiberal)
Occasional: dizziness; headache; GI disturbance
Rare: reversible peripheral neuropathy

OSELTAMIVIR PHOSPHATE (TamiFlu)
Occasional: nausea; vomiting; headache

OXACILLIN— See Penicillins

OXAMNIQUINE (Vansil)
Occasional: headache; fever; dizziness; somnolence and insomnia; nausea; diarrhea; rash; increased aminotransferases; ECG changes; EEG changes; orange-red discoloration of urine
Rare: seizures; neuropsychiatric disturbances

OXYTETRACYCLINE — See Tetracyclines

PARA-AMINOSALICYLIC ACID — See Aminosalicylic acid

PAROMOMYCIN (aminosidine; Humatin)
Frequent: GI disturbance with oral use
Rare: eighth-nerve damage (mainly auditory) and renal damage when aminosidine is given IV; vertigo; pancreatitis

PENICILLINS
(amoxicillin – Amoxil, others; amoxicillin/clavulanic acid – Augmentin; ampicillin – Princpen, others; ampicillin/sulbactam – Unasyn; carbenicillin indanyl – Geocillin; cloxacillin; dicloxacillin – Dycill, others; methicillin; mezlocillin – Mezin; nafcillin – Nafcil, others; oxacillin; penicillin G; penicillin V; piperacillin – Pipracil; piperacillin/tazobactam – Zosyn; ticarcillin – Ticar; ticarcillin/clavulanic acid – Timentin)
Frequent: allergic reactions, rarely anaphylaxis, erythema multiforme or Stevens Johnson syndrome; rash (more common with ampicillin and amoxicillin than with other penicillins); diarrhea (most common with ampicillin and amoxicillin/clavulanic acid); nausea and vomiting with amoxicillin/clavulanic acid
Occasional: hemolytic anemia; neutropenia; pseudomembranous colitis; platelet dysfunction with high doses of piperacillin, ticarcillin, nafcillin, or methicillin; cholestatic hepatitis with amoxicillin/clavulanic acid
Rare: hepatic damage with semisynthetic penicillins; granulocytopenia or agranulocytosis with semisynthetic penicillins;
renal damage with semisynthetic penicillins and penicillin G; muscle irritability and seizures, usually after high doses in patients with impaired renal function; hyperkalemia and arrhythmias with IV potassium penicillin G given rapidly; bleeding diathesis; Henoch-Schönlein purpura with ampicillin; thrombocytopenia with methicillin and mezlocillin; terror, hallucinations, disorientation, agitation, bizarre behavior and neurological reactions with high doses of procaine penicillin G, oxacillin, or ticarcillin; hypokalemic alkalosis and/or sodium overload with high doses of ticarcillin or nafcillin; hemorrhagic cystitis with methicillin; GI bleeding with dicloxacillin; tissue damage with extravasation of nafcillin

Rare: allergic reactions; neuromuscular blockade and apnea with parenteral administration, not reversed by neostigmine but may be by IV calcium chloride

PRAZIQUANTEL *(Biltricide)*
Frequent: abdominal pain; diarrhea; malaise; headache; dizziness
Occasional: sedation; fever; sweating; nausea; eosinophilia
Rare: pruritus; rash; edema; hiccups

PRIMAQUINE PHOSPHATE
Frequent: hemolytic anemia in G-6-PD deficiency
Occasional: neutropenia; GI disturbance; methemoglobinemia
Rare: CNS symptoms; hypertension; arrhythmias

PYRANTEL PAMOATE *(Antiminth, others)*
Occasional: oral ulceration; hair loss; scaling of palms and soles; urticaria
Rare: hematuria (with large doses); vomiting; abdominal pain; diarrhea (with large doses); thrombocytopenia

PYRETHRINS with PIPERONYL BUTOXIDE *(RID, others)*
Occasional: allergic reactions

POLYMIXINS *(colistimethate – Coly-Mycin, polymyxin B – generic)*
Occasional: renal damage; peripheral neuropathy; thrombophlebitis at IV injection site with polymyxin B

Rare: photosensitivity reactions; acute hypertension

PYRIMETHAMINE *(Daraprim)*
Occasional: blood dyscrasias; folic acid deficiency
Rare: rash; vomiting; convulsions; shock; possibly pulmonary eosinophilia;
Principal Adverse Effects of Antimicrobial Drugs

fatal cutaneous reactions with pyrimethamine-sulfadoxine (Fansidar)

QUINACRINE
Frequent: disulfiram-like reaction with alcohol; nausea and vomiting; colors skin and urine yellow
Occasional: headache; dizziness
Rare: rash; fever; psychosis; extensive exfoliative dermatitis in patients with psoriasis

QUININE SULFATE — See Quinine dihydrochloride

QUININE DIHYDROCHLORIDE
Frequent: cinchonism (tinnitus, headache, nausea, abdominal pain, visual disturbance)
Occasional: deafness; hemolytic anemia; other blood dyscrasias; photosensitivity reactions; hypoglycemia; arrhythmias; hypotension; fever
Rare: blindness; sudden death if injected too rapidly; hypersensitivity reaction with TTP-HUS

QUINUPRISTIN/DALFOPRISTIN (Synercid)
Frequent: local irritation and thrombophlebitis with peripheral IV administration; arthralgias; myalgias; increase in conjugated bilirubin
Occasional: nausea; rash; increased aminotransferases

RIBAVIRIN (Copegus, Rebetol, Virazole, Rebetron with interferon alfa)
Occasional: anemia; headache; abdominal cramps and nausea; fatigue; elevation of bilirubin; teratogenic and embryo-lethal in animals and mutagenic in mammalian cells; rash; conjunctivitis; bronchospasm with aerosol use; hyperuricemia; depression

RIFABUTIN (Mycobutin) — Similar to rifampin; also iritis, uveitis, leukopenia, arthralgia

RIFAMPIN (Rifadin, Rimactane)
Frequent: colors urine, tears, saliva, CSF, contact lenses, and lens implants red-orange
Occasional: liver damage; GI disturbance; allergic reactions
Rare: flu-like syndrome, sometimes with thrombocytopenia, hemolytic anemia, shock, and renal failure, particularly with intermittent therapy; acute organic brain syndrome; acute adrenal crisis in patients with adrenal insufficiency; renal damage; severe proximal myopathy

RIFAMPIN-ISONIAZID (Rifamate) — See individual drugs

RIFAMPIN-ISONIAZID-PYRAZINAMIDE (Rifater) — See individual drugs

RIFAPENTINE (Priftin) — Similar to rifampin; higher rate of hyperuricemia

RIFAXIMIN (Xifaxan)
Occasional: headache
Rare: abnormal dreams; allergic dermatitis; hypersensitivity reactions; photosensitivity; motion sickness

RIMANTADINE (Flumadine) — Similar to amantadine, but lower risk of CNS effects

RITONAVIR (Norvir)
Frequent: nausea; diarrhea; vomiting; asthenia; elevated serum triglycerides, cholesterol
Occasional: abdominal pain; anorexia; dyspepsia; circumoral and peripheral paresthesias; rash; altered taste; increased aminotransferase activity; cholestasis; glucose intolerance; abnormal fat distribution; increased bleeding in hemophiliacs
Rare: nephrotoxicity; hyperprolactinemia
Principal Adverse Effects of Antimicrobial Drugs

SAQUINAVIR *(Invirase; Fortovase)*

Occasional: diarrhea; abdominal discomfort; nausea; glucose intolerance; hyperlipidemia; abnormal fat distribution; increased aminotransferase activity; increased bleeding in hemophiliacs

Rare: rash; hyperprolactinemia

SULFONAMIDES

Frequent: allergic reactions (rash, photosensitivity, drug fever)

Occasional: kernicterus in newborn; renal damage; liver damage; Stevens-Johnson syndrome (particularly with long-acting sulfonamides); hemolytic anemia; other blood dyscrasias; vasculitis

Rare: transient acute myopia; pseudomembranous colitis; reversible infertility in men with sulfasalazine; CNS toxicity with trimethoprim-sulfamethoxazole in patients with AIDS

SURAMIN SODIUM

Frequent: vomiting; pruritus; urticaria; paresthesias; hyperesthesia of hands and feet; peripheral neuropathy; photophobia

Occasional: kidney damage; blood dyscrasias; shock; optic atrophy

TELITHROMYCIN *(Ketek)*

Frequent: GI disturbance; headache; dizziness

Occasional: visual disturbances including blurred vision, diplopia; difficulty focusing; rash

Rare: exacerbation of myasthenia; hepatitis; increased aminotransferases; anaphylaxis; edema; muscle cramps; QT prolongation

TENOFVIR *(Viread)*

Occasional: diarrhea; nausea; vomiting; flatulence

TERBINAFINE *(Lamisil)*

Frequent: headache; GI disturbance

Occasional: Taste disturbance; rash; pruritus; urticaria; toxic epidermal necrolysis; erythema multiforme; increased aminotransferases

Rare: serious hepatic injury; anaphylaxis; pancytopenia; agranulocytosis; severe neutropenia; changes in ocular lens and retina; parotid swelling; congestive heart failure
Principal Adverse Effects of Antimicrobial Drugs

TETRACYCLINES
(demeclocycline – *Declomycin*; doxycycline – *Vibramycin*, others; minocycline – *Minocin*, others; oxytetracycline – *Terramycin*, others; tetracycline hydrochloride – *Sumycin*, others)

Frequent: GI disturbance; bone lesions and staining and deformity of teeth in children up to 8 years old, and in the newborn when given to pregnant women after the fourth month of pregnancy

Occasional: malabsorption; enterocolitis; photosensitivity reactions (most frequent with demeclocycline); vestibular toxicity with minocycline; increased azotemia with renal insufficiency (except doxycycline, but exacerbation of renal failure with doxycycline has been reported); renal insufficiency with demeclocycline in cirrhotic patients; hepatic injury; parenteral doses may cause serious liver damage, especially in pregnant women and patients with renal disease receiving 1 gram or more daily; esophageal ulcerations; cutaneous and mucosal hyperpigmentation, tooth discoloration in adults with minocycline

Rare: allergic reactions, including serum sickness and anaphylaxis; pseudomembranous colitis; blood dyscrasias; drug-induced lupus with minocycline; autoimmune hepatitis; increased intracranial pressure; fixed-drug eruptions; diabetes insipidus with demeclocycline; transient acute myopia; blurred vision, diplopia, papilledema; photoonycholysis and onycholysis; acute interstitial nephritis with minocycline; aggravation of myasthenic symptoms with IV injection, reversed with calcium; possibly transient neuropathy; hemolytic anemia

TICARCILLIN — See Penicillins

TICARCILLIN/CLAVULANIC ACID — See Penicillins

TIGECYCLINE (*Tygacil*) — See also Tetracyclines

Frequent: nausea; vomiting; diarrhea; abdominal pain; permanent discoloration of teeth when given during tooth development (last half of pregnancy, infancy, and childhood to age 8 yrs)

Occasional: photosensitivity; pseudotumor cerebri; pancreatitis; injection site reactions

Rare: pseudomembranous colitis

TINIDAZOLE (*Tindamax*)

Occasional: metallic taste; GI symptoms; rash

Rare: weakness

TIPRANAVIR (Aptivus)/ RITONAVIR — See also Ritonavir

Frequent: diarrhea; nausea; elevated serum triglycerides, cholesterol; increased aminotransferases

Occasional: fatigue; vomiting; abdominal pain; dyspepsia; anorexia; hyperglycemia; rash; abnormal fat distribution; increased bleeding in hemophiliacs

Rare: hepatitis; hepatic failure; nephrotoxicity

TOBRAMYCIN (*Nebcin*, others) — Similar to gentamicin

Rare: delirium

TRIFLURIDINE (*Viroptic*)

Occasional: burning or stinging; palpebral edema

Rare: epithelial keratopathy; hypersensitivity reactions
Principal Adverse Effects of Antimicrobial Drugs

TRIMETHOPRIM (Proloprim, others)
Frequent: nausea, vomiting with high doses
Occasional: megaloblastic anemia; thrombocytopenia; neutropenia; rash; fixed drug eruption
Rare: pancytopenia; hyperkalemia

TRIMETRAXETE (Neutrexin; with "leucovorin rescue")
Occasional: eighth-nerve damage (mainly hearing) especially with large or continued doses (more than 10 days), in presence of renal damage, and in the elderly; neutropenia; renal damage; allergic reactions; rash; "redman" syndrome
Rare: peripheral neuropathy; hypotension with rapid IV administration; exfoliative dermatitis

TRIMETHOPRIM/SULFAMETHOXAZOLE (Bactrim, Septra, others)
Frequent: rash; fever; nausea and vomiting
Occasional: hemolysis in G-6-PD deficiency; acute megaloblastic anemia; granulocytopenia; thrombocytopenia; pseudomembranous colitis; kernicterus in newborn; hyperkalemia
Rare: agranulocytosis; aplastic anemia; hepatotoxicity; Stevens-Johnson syndrome; aseptic meningitis; fever; confusion; depression; hallucinations; deterioration in renal disease; intrahepatic cholestasis; methemoglobinemia; pancreatitis; ataxia; CNS toxicity in patients with AIDS; renal tubular acidosis; hyperkalemia

TROLEANDOMYCIN (TAO)
Occasional: stomatitis; GI disturbance; cholestatic jaundice
Rare: allergic reactions

VALACYCLOVIR (Valtrex) — Generally same as acyclovir
Rare: thrombotic thrombocytopenic purpura/hemolytic uremic syndrome in severely immunocompromised patients treated with high doses

VALGANCICLOVIR (Valcyte) — Generally same as ganciclovir

VANCOMYCIN (Vancocin, others)
Frequent: thrombophlebitis; fever, chills
DOSAGE OF ANTIMICROBIAL AGENTS

In choosing the dosage of an antimicrobial drug, the physician must consider the site of infection, the identity and antimicrobial susceptibility of the infecting organism, the possible toxicity of the drug of choice, and the condition of the patient, with special attention to renal function. This article and the table that follows on page 256 offer some guidelines for determining antimicrobial dosage, but dosage recommendations taken out of context of the clinical situation may be misleading.

RENAL INSUFFICIENCY — Antimicrobial drugs excreted through the urinary tract may be toxic for patients with renal insufficiency if they are given in usual therapeutic doses, because serum concentrations in these patients may become dangerously high. Nephrotoxic and ototoxic drugs such as gentamicin or other aminoglycosides may damage the kidney, further decreasing the excretion of these drugs, leading to higher blood concentrations that may be ototoxic and may cause additional renal damage. In patients with renal insufficiency, therefore, an antimicrobial drug with minimal nephrotoxicity, such as a beta-lactam, is preferred. When nephrotoxic drugs must be used, renal function should be monitored. Measurements of serum creatinine or blood urea nitrogen (BUN) concentrations are useful as indices of renal function, but are not as accurate as measurements of creatinine clearance; serum creatinine and BUN concentrations may be normal even with significant loss of renal function.

In renal insufficiency, control of serum concentrations of potentially toxic drugs can be achieved either by varying the dose or by varying the interval between doses. Serum antimicrobial concentrations should be measured whenever possible; rigid adherence to any dosage regimen
can result in either inadequate or toxic serum concentrations in patients with renal insufficiency, particularly when renal function is changing rapidly.

CHILDREN'S DOSAGE — Many antimicrobial drugs have such a broad therapeutic index that it makes no difference in practice if children's dosage is based on weight or on surface area. Where dosage considerations are important in preventing severe toxic effects, as with the aminoglycosides, recommendations for safe usage are derived primarily from experience with dosage based on weight.

ONCE-DAILY AMINOGLYCOSIDES — In certain categories of patients once-daily doses of gentamicin, tobramycin and amikacin are as effective for many indications as multiple daily doses and are equally or less nephrotoxic. Monitoring 24-hour trough drug levels is recommended to minimize the risk of toxicity. Once-daily doses of aminoglycosides are not recommended for treatment of endocarditis and should be used cautiously in the elderly, immunocompromised patients and those with renal insufficiency.

THE TABLE — Dosage — The recommendations in the table that follows are based on the judgment of Medical Letter consultants. In some cases they differ from the manufacturer's recommendations, partly because clinical experience reported after the labeling is approved is not always reflected by an appropriate change in the manufacturer's recommendations. The range of dosage specified for some drugs may not include relatively rare indications. In general, lower doses are sufficient for treatment of urinary tract infection, and higher doses are recommended for such severe infections as meningitis, endocarditis and the sepsis syndrome.
Interval – More than one interval between doses is recommended for some drugs. In general, the longer intervals should be used for infections of the urinary tract and for intramuscular administration. Recommendations are made in hours, but many oral drugs can be given three or four times during the daytime for convenience. For maximum absorption, which is often not necessary, most oral antibiotics should be given at least 30 minutes before or two hours after a meal.
Antimicrobial Drug Dosage†

<table>
<thead>
<tr>
<th>Adults</th>
<th>Oral</th>
<th>Parenteral</th>
<th>Children</th>
<th>Oral</th>
<th>Parenteral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacavir</td>
<td>300 mg q12h or 600 mg q24h</td>
<td>8 mg/kg q12h</td>
<td>Abacavir/ lamivudine</td>
<td>600 mg/300 mg q24h</td>
<td></td>
</tr>
<tr>
<td>Acyclovir</td>
<td>200 mg 5x/d or 400 mg q8h<sup>1</sup></td>
<td>5-15 mg/kg q8h</td>
<td>Lamivudine</td>
<td>q24h</td>
<td>20 mg/kg q6h</td>
</tr>
<tr>
<td>Adefovir</td>
<td>10 mg q24h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albendazole</td>
<td>400 mg q12-24h</td>
<td>10-15 mg/kg/d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amantadine</td>
<td>100 mg q12-24h</td>
<td>4.4 mg/kg q12-24h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>5 mg/kg q8h, 7.5 mg/kg q12h<sup>3</sup> or 15 mg/kg q24h<sup>3</sup></td>
<td>Amikacin</td>
<td>q24h</td>
<td>5 mg/kg q8h or 7.5 mg/kg q12h<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td>Aminosalicylic acid</td>
<td>8-12 g div q12-8h</td>
<td>200-300 mg/kg div q12-6h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>250-500 mg q8h or 500-875 mg q12h<sup>4</sup></td>
<td>6.6-13.3 mg/kg q8h or 15 mg/kg q12h<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin/ clavulanic acid</td>
<td>250-500 mg<sup>5</sup> q8h or 500-875 mg<sup>5</sup> q12h or 2000 mg<sup>5</sup> q12h</td>
<td>6.6-13.3 mg/kg<sup>5</sup> q8h or 12.5-45 mg/kg<sup>5</sup> q12h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>500 mg q6h 1-2 g q4-6h 12.5-25 mg/kg q6h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin/ sulbactam</td>
<td>1.5-3 g<sup>6</sup> q6h</td>
<td>50 mg/kg<sup>9</sup> q6h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amprenavir<sup>10</sup></td>
<td>1200 mg q12h</td>
<td>20 mg/kg q12h<sup>11</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Dosage recommendations are also included in some articles within this handbook. Certain factors, such as site of infection, susceptibility of infecting organism and concomitant use of interacting drugs, need to be considered when dosing antimicrobial drugs.

1. For treatment of initial genital herpes. For suppression of genital herpes, 400 mg q12h is used. For treatment of varicella, 800 mg q6h and for zoster, 800 mg 5 times daily every 4 hours are recommended.
2. For patients on hemodialysis, dose is 10 mg q7 days, given after hemodialysis.
3. For information on once-daily dosing, see page 254. For renal failure give full dose once, then monitor levels.
4. Doses up to 4 g/d (80-90 mg/kg/d, divided q12h in children) are sometimes used for infections with intermediately-resistant pneumococcus.
<table>
<thead>
<tr>
<th>Usual Maximum Dose/Day</th>
<th>Dose</th>
<th>Adult Dosage in Renal Failure For Creatinine Clearance (mL/min)</th>
<th>Extra Dose After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>80-50</td>
<td>50-10</td>
</tr>
<tr>
<td>600 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 mg/300 mg</td>
<td></td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>4 g oral 45 mg/kg IV</td>
<td></td>
<td>10 mg/kg</td>
<td>q8h</td>
</tr>
<tr>
<td>10 mg</td>
<td></td>
<td>10 mg</td>
<td>q24h</td>
</tr>
<tr>
<td>800 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 mg</td>
<td></td>
<td>100 mg</td>
<td>q24h</td>
</tr>
<tr>
<td>1.5 g</td>
<td></td>
<td>5 mg/kg</td>
<td>q12h</td>
</tr>
<tr>
<td>12 g</td>
<td></td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>3 g⁴</td>
<td></td>
<td>250-500 mg</td>
<td>q8h</td>
</tr>
<tr>
<td>1.5 g</td>
<td></td>
<td>No change</td>
<td>250-500 mg⁵</td>
</tr>
<tr>
<td>1 mg/kg⁶</td>
<td></td>
<td>Change not required⁷</td>
<td></td>
</tr>
<tr>
<td>4 mg/kg</td>
<td></td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>5 mg/kg</td>
<td></td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>14 g</td>
<td></td>
<td>0.5-2 g</td>
<td>q6h</td>
</tr>
<tr>
<td>12 g</td>
<td></td>
<td>1.5-3 g⁹</td>
<td>No change</td>
</tr>
<tr>
<td>2400 mg</td>
<td></td>
<td>Change not required</td>
<td></td>
</tr>
</tbody>
</table>

5. Dosage based on amoxicillin content. In order to ensure the proper amount of clavulanic acid, the use of half or multiple tablets is not recommended (unless using Augmentin XR).
6. Or up to 1.5 mg/kg given every other day. Given IV, over a period of two to four hours.
7. A pre- and post-dose IV bolus of 500 mL normal saline may decrease renal toxicity.
8. For meningitis in children caused by ampicillin-sensitive *H. influenzae* type b, Medical Letter consultants recommend up to 400 mg/kg/d. Meningitis should be treated q4h.
9. Combination formulation: 1.5-g vial contains 1 g ampicillin/500 mg sulbactam; 3-g vial contains 2 g ampicillin/1 g sulbactam.
10. Dosage adjustment may be necessary in patients with hepatic dysfunction.
11. Using capsules. Also available in solution: 22.5 mg/kg q12h or 17 mg/kg q8h (max. 2800 mg/d).
Antimicrobial Drug Dosage† (continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adults</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
<td>Parenteral</td>
</tr>
<tr>
<td>Atazanavir</td>
<td>400 mg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>q24h</td>
<td></td>
</tr>
<tr>
<td>Atovaquone</td>
<td>750 mg</td>
<td>30 mg/kg</td>
</tr>
<tr>
<td></td>
<td>q12h</td>
<td></td>
</tr>
<tr>
<td>Atovaquone/proguanil</td>
<td>1000 mg/400 mg</td>
<td>See footnote 16</td>
</tr>
<tr>
<td></td>
<td>q24h</td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td>250-1000 mg</td>
<td>500 mg</td>
</tr>
<tr>
<td></td>
<td>q24h</td>
<td>or 2 g once</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aztreonam</td>
<td>-</td>
<td>1-2 g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>q6-8h</td>
</tr>
<tr>
<td>Capreomycin</td>
<td>-</td>
<td>15 mg/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>q24h</td>
</tr>
<tr>
<td>Carbenicillin indanyl sodium</td>
<td>1-2 tabs</td>
<td>7.5-12.5 mg/kg</td>
</tr>
<tr>
<td></td>
<td>q24h</td>
<td></td>
</tr>
<tr>
<td>Caspofungin</td>
<td>-</td>
<td>70 mg day 1, then</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 mg q24h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>q8h</td>
</tr>
<tr>
<td>Cefaclor</td>
<td>250-500 mg</td>
<td>6.6-13.3 mg/kg</td>
</tr>
<tr>
<td></td>
<td>q8h</td>
<td>or 375-500 mg q12h</td>
</tr>
<tr>
<td>Cefadroxil</td>
<td>1 g</td>
<td>15 mg/kg</td>
</tr>
<tr>
<td></td>
<td>q12-24h</td>
<td></td>
</tr>
<tr>
<td>Cefamandole</td>
<td>500 mg-2 g</td>
<td>50-150 mg/kg/d,</td>
</tr>
<tr>
<td></td>
<td>q4-8h</td>
<td>div q4-8h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefazolin</td>
<td>500 mg-2 g</td>
<td>25-100 mg/kg/d,</td>
</tr>
<tr>
<td></td>
<td>q6-8h</td>
<td>div q6-8h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefdinir</td>
<td>300 mg q12h</td>
<td>7 mg/kg q12h</td>
</tr>
<tr>
<td></td>
<td>q12h</td>
<td>or 600 mg q24h</td>
</tr>
<tr>
<td>Cefditoren</td>
<td>200-400 mg</td>
<td>See footnote 22</td>
</tr>
<tr>
<td></td>
<td>q12h</td>
<td></td>
</tr>
<tr>
<td>Cefepime</td>
<td>1-2 g</td>
<td>50 mg/kg</td>
</tr>
<tr>
<td></td>
<td>q8-12h</td>
<td></td>
</tr>
<tr>
<td>Cefixime</td>
<td>200 mg q12h or 400 mg q24h</td>
<td>4 mg/kg q12h</td>
</tr>
<tr>
<td></td>
<td>q8-12h</td>
<td>or 8 mg/kg q24h</td>
</tr>
</tbody>
</table>

12. For treatment-experienced patients or those taking efavirenz or tenofovir, the recommended dose is 300 mg taken once daily with 100 mg of ritonavir.
13. For treatment of *Pneumocystis jiroveci* pneumonia (PCP). The dose for prevention of PCP is 1500 mg once daily.
14. For infants 1-3 months and children older than 24 months of age. The recommended dose for children 4-24 months of age is 45 mg/kg once daily.
15. Dosage for treatment of malaria. For prevention of malaria, dose is 250 mg/100 mg once daily. Each adult tablet contains 250 mg atovaquone/100 mg proguanil.
16. For pediatric dosing, see Drugs for Parasitic Infections (Malaria) page 184.
<table>
<thead>
<tr>
<th>Usual Maximum Dose/Day</th>
<th>Adult Dosage in Renal Failure For Creatinine Clearance (mL/min)</th>
<th>Extra Dose After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose 80-50</td>
<td>50-10</td>
</tr>
<tr>
<td>400 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>1500 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>1000 mg/400 mg</td>
<td>No change</td>
<td>Unknown</td>
</tr>
<tr>
<td>500 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>8 g</td>
<td>500 mg-1 g q8h</td>
<td>500-750 mg q8h</td>
</tr>
<tr>
<td>1 g</td>
<td>No change</td>
<td>7.5 mg/kg q24-48h</td>
</tr>
<tr>
<td>3 g</td>
<td>See package insert</td>
<td></td>
</tr>
<tr>
<td>50 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>4 g</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>2 g</td>
<td>500 mg q12-24h</td>
<td>q12-24h</td>
</tr>
<tr>
<td>12 g</td>
<td>1-2 g q8h</td>
<td>1-2 g q8h</td>
</tr>
<tr>
<td>6 g</td>
<td>1 g q8h</td>
<td>1 g q8-12h</td>
</tr>
<tr>
<td>600 mg</td>
<td>300 mg No change</td>
<td>q24h</td>
</tr>
<tr>
<td>800 mg</td>
<td>200-400 mg No change</td>
<td>200 mg q12-24h</td>
</tr>
<tr>
<td>6 g</td>
<td>2 g q12h</td>
<td>1-2 g q24h</td>
</tr>
<tr>
<td>400 mg</td>
<td>200-400 mg q24h</td>
<td>q24h</td>
</tr>
</tbody>
</table>

17. For adults: 500 mg on day 1 and 250 mg/d on days 2-5; urethritis and cervicitis: 1 g once for C. trachomatis, 2 g once for N. gonorrhoeae; MAC prophylaxis: 1200 mg once/week; MAC treatment: 600 mg once daily (with ethambutol). For children: pharyngitis/tonsillitis: 12 mg/kg once a day for 5 days; acute otitis media: 10 mg/kg on day 1 and 5 mg/kg on days 2 to 5 or single-dose 30 mg/kg or 10 mg/kg once daily for 3 days. Extended-release oral suspension (Zmax) is given as 2 g once for treatment of adults with acute bacterial sinusitis or mild-moderate CAP.

18. Tablets contain 382 mg of carbenicillin.

20. For patients with moderate hepatic insufficiency (Child-Pugh score 7-9) the daily dose should be reduced to 35 mg following the standard 70 mg loading dose on day 1.

21. Not approved for use in children. Limited experience in clinical trials with 1 mg/kg q24h.

22. Has not been studied in children. Use adult dosage in adolescents ≥12 years of age.
Antimicrobial Drug Dosage† (continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adults</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
<td>Parenteral</td>
</tr>
<tr>
<td>Cefonicid</td>
<td>500 mg-2 g</td>
<td>q24h</td>
</tr>
<tr>
<td>Cefoperazone<sup>10</sup></td>
<td>500 mg-4 g</td>
<td>q6-12h</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>1-2 g</td>
<td>q4-12h</td>
</tr>
<tr>
<td>Cefotetan</td>
<td>500 mg-3 g</td>
<td>q12h</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>1-3 g</td>
<td>q4-6h</td>
</tr>
<tr>
<td>Cefpodoxime</td>
<td>100-400 mg</td>
<td>q12h</td>
</tr>
<tr>
<td>Cefprozil</td>
<td>250-500 mg</td>
<td>q12h</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>250-2 g</td>
<td>q8-12h</td>
</tr>
<tr>
<td>Ceftibuten</td>
<td>400 mg</td>
<td>q24h</td>
</tr>
<tr>
<td>Ceftizoxime</td>
<td>500 mg-4 g</td>
<td>q8-12h</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>1-2 g</td>
<td>q12-24h</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>750 mg-1.5 g</td>
<td>q8h</td>
</tr>
<tr>
<td>Cefuroxime axetil</td>
<td>125-500 mg</td>
<td>q12h</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>250 mg-1 g</td>
<td>q6h</td>
</tr>
<tr>
<td>Cephradine</td>
<td>250 mg-1 g q6h or 500 mg-1 g q12h</td>
<td>500 mg-2 g q6h</td>
</tr>
<tr>
<td>Chloramphenicol<sup>10</sup></td>
<td>12.5-25 mg/kg</td>
<td>q6h</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>See footnote 25</td>
<td>See footnote 25</td>
</tr>
<tr>
<td>Cidofovir</td>
<td>5 mg/kg once/wk x2, then 5 mg/kg every other wk</td>
<td></td>
</tr>
</tbody>
</table>

²³ Not approved for use in children. Dosage recommended by the Committee on Infectious Diseases of the American Academy of Pediatrics.

²⁴ IV administration; dosage should be adjusted according to serum concentration.

²⁵ For specific dosing information, see Drugs for Parasitic Infections (Malaria), page 184.
<table>
<thead>
<tr>
<th>Usual Maximum Dose/Day</th>
<th>Adult Dosage in Renal Failure For Creatinine Clearance (mL/min)</th>
<th>Extra Dose After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose</td>
<td>80-50</td>
</tr>
<tr>
<td>2 g</td>
<td>12 g</td>
<td>0.5-1.5 g</td>
</tr>
<tr>
<td></td>
<td>Change not required</td>
<td>&q<sub>24h</sub></td>
</tr>
<tr>
<td>12 g</td>
<td>1-2 g</td>
<td>No change</td>
</tr>
<tr>
<td>6 g</td>
<td>1-3 g</td>
<td>q<sub>12h</sub></td>
</tr>
<tr>
<td>12 g</td>
<td>1-2 g</td>
<td>0.5-1 g</td>
</tr>
<tr>
<td></td>
<td>q<sub>8h</sub></td>
<td>q<sub>12h</sub></td>
</tr>
<tr>
<td>800 mg</td>
<td>200-400 mg</td>
<td>q<sub>12h</sub></td>
</tr>
<tr>
<td>1000 mg</td>
<td>250-500 mg</td>
<td>No change</td>
</tr>
<tr>
<td>6 g</td>
<td>0.5-2 g</td>
<td>0.5 g</td>
</tr>
<tr>
<td></td>
<td>q<sub>8-12h</sub></td>
<td>q<sub>12-24h</sub></td>
</tr>
<tr>
<td>400 mg</td>
<td>No change</td>
<td>100-200 mg</td>
</tr>
<tr>
<td></td>
<td>q<sub>24h</sub></td>
<td>q<sub>24h</sub></td>
</tr>
<tr>
<td>12 g</td>
<td>0.5-1.5 g</td>
<td>0.25-1 g</td>
</tr>
<tr>
<td></td>
<td>q<sub>8h</sub></td>
<td>q<sub>12h</sub></td>
</tr>
<tr>
<td>4 g</td>
<td>Change not required</td>
<td>No</td>
</tr>
<tr>
<td>9 g</td>
<td>0.75-1.5 g</td>
<td>q<sub>8h</sub></td>
</tr>
<tr>
<td>1 g</td>
<td>Change not required</td>
<td>250 mg</td>
</tr>
<tr>
<td>4 g</td>
<td>0.25-1 g</td>
<td>No change</td>
</tr>
<tr>
<td>8 g</td>
<td>1-2 g</td>
<td>q<sub>6h</sub></td>
</tr>
<tr>
<td>4 g</td>
<td>Change not required</td>
<td>No</td>
</tr>
</tbody>
</table>

* But give usual dose after dialysis.
26. For CMV. Initiation of therapy contraindicated in patients with serum creatinine >1.5 mg/dL, creatinine clearance ≤55 mL/min or urine protein ≥100 mg/dL. If serum creatinine increases by 0.3-0.4 mg/dL above baseline, decrease dose to 3 mg/kg. Discontinue for increases ≥0.5 mg/dL.
Antimicrobial Drug Dosage† (continued)

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th></th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
<td>Parenteral</td>
<td>Oral</td>
</tr>
<tr>
<td>Cinoxacin</td>
<td>250 mg q6h or 500 mg q12h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>250-750 mg q12h or 1000 mg q24h</td>
<td>200-400 mg q8-12h</td>
<td>10-20 mg/kg q12h</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>250-500 mg q12h</td>
<td></td>
<td>7.5 mg/kg q12h</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>150-450 mg q6h</td>
<td>150-900 mg q6-8h</td>
<td>2-8 mg/kg q6-8h</td>
</tr>
<tr>
<td>Colistin</td>
<td>2.5-5 mg/kg/d, div in 2-4 doses</td>
<td>2.5-5 mg/kg/d, div in 2-4 doses</td>
<td></td>
</tr>
<tr>
<td>Cycloserine</td>
<td>250-500 mg q12h</td>
<td></td>
<td>5-10 mg/kg q12h</td>
</tr>
<tr>
<td>Dapsone</td>
<td>100 mg q24h</td>
<td></td>
<td>2 mg/kg q24h</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>4 mg/kg q24h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delavirdine</td>
<td>400 mg tid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicloxacillin</td>
<td>125-500 mg q6h</td>
<td>3.125-6.25 mg/kg q6h</td>
<td></td>
</tr>
<tr>
<td>Didanosine</td>
<td>>60 kg: 200 mg q12h or 400 mg q24h</td>
<td><60 kg: 125 mg q12h or 250 mg q24h</td>
<td>90-120 mg/m² q12h</td>
</tr>
<tr>
<td>Dirithromycin</td>
<td>500 mg q24h</td>
<td></td>
<td>≥12 yrs: 500 mg q24h</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>100 mg q12-24h</td>
<td>100 mg q12-24h</td>
<td>2.2 mg/kg q12-24h</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>600 mg q24h</td>
<td></td>
<td>200-400 mg q24h</td>
</tr>
<tr>
<td>Emtricitabine</td>
<td>200 mg q24h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emtricitabine/tenofovir</td>
<td>200 mg/300 mg q24h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfuvirtide</td>
<td>90 mg SC q12h</td>
<td></td>
<td>≥6 yrs: 2 mg/kg SC q12h</td>
</tr>
</tbody>
</table>

27. Extended-release formulation for treatment of UTI.
28. For PEP of inhalation anthrax oral dose is 15 mg/kg (max 500 mg) and IV dose is 10 mg/kg (max 400 mg).
29. Based on serum creatinine: 1.3-1.5 mg/dL, dose 2.5-3.8 mg/kg/d divided q12h; 1.6-2.5 mg/dL, dose 2.5 mg/kg/d q24h; 2.6-4 mg/dL, dose 1.5 mg/kg q36h.
30. Monitor concentrations, toxicity increases markedly above 30 mcg/mL.
31. Dosage for prophylaxis of *Pneumocystis jiroveci* pneumonia (PCP). Adult dosage can be changed to 50 mg daily or 200 mg weekly if given with weekly pyrimethamine and leucovorin.
Adult Dosage in Renal Failure

<table>
<thead>
<tr>
<th>Usual Maximum Dose/Day</th>
<th>Adult Dosage in Renal Failure For Creatinine Clearance</th>
<th>Extra Dose After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80-50</td>
<td>50-10</td>
</tr>
<tr>
<td>1 g</td>
<td>250 mg</td>
<td>250 mg</td>
</tr>
<tr>
<td></td>
<td>q8h</td>
<td>q12-24h</td>
</tr>
<tr>
<td>1.5 g</td>
<td>No change</td>
<td>250-500 mg</td>
</tr>
<tr>
<td></td>
<td>q12-18h</td>
<td>q24h</td>
</tr>
<tr>
<td>1 g</td>
<td>No change</td>
<td>q24h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8 mg</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mg/kg</td>
<td>See footnote 29</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 g</td>
<td>No change</td>
<td>250 mg</td>
</tr>
<tr>
<td></td>
<td>q12-24h</td>
<td>q24h</td>
</tr>
<tr>
<td>100 mg</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 g</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td>4 g</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 mg</td>
<td>No change</td>
<td>100-200 mg</td>
</tr>
<tr>
<td></td>
<td>q24h</td>
<td>q24h</td>
</tr>
<tr>
<td>500 mg</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 mg</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 mg</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 mg</td>
<td>No change</td>
<td>200 mg</td>
</tr>
<tr>
<td></td>
<td>q48-72h</td>
<td>q24h</td>
</tr>
<tr>
<td>200 mg/300 mg</td>
<td>No change</td>
<td>CrCl 30-49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CrCl <30 not recommended</td>
</tr>
<tr>
<td>180 mg</td>
<td>No change</td>
<td>Unknown for CrCl <35 mL/min</td>
</tr>
</tbody>
</table>

* But give usual dose after dialysis.

32. Refers to chewable, dispersible tablets. For adults and children more than one year old, each dose should include two tablets to supply adequate buffer. Didanosine also available in powder for oral solution for adults: 60 kg: 250 mg q12h, <60 kg: 167 mg q12h and as a delayed-release capsule for adults: 60 kg: 400 mg q24h, <60 kg: 250 q24h. A pediatric powder formulation is also available.

33. Not recommended for children less than eight years old.
Antimicrobial Drug Dosage† (continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adults</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
<td>Parenteral</td>
</tr>
<tr>
<td>Entecavir</td>
<td>0.5 mg q24h<sup>34</sup></td>
<td></td>
</tr>
<tr>
<td>Ertapenem</td>
<td>1 g q24h</td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td>250-500 mg q6h</td>
<td>250 mg-1 g q6h</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>15-25 mg/kg q24h or 50 mg/kg q24h or 2-3x/wk</td>
<td>50 mg/kg q24h or 50 mg/kg 2x/wk</td>
</tr>
<tr>
<td>Ethionamide</td>
<td>250-500 mg q12h</td>
<td>7.5-10 mg/kg q12h</td>
</tr>
<tr>
<td>Famciclovir</td>
<td>500 mg q8h<sup>38</sup></td>
<td></td>
</tr>
<tr>
<td>Fluconazole</td>
<td>50-400 mg q24h</td>
<td>100-400 mg q24h</td>
</tr>
<tr>
<td>Flucytosine</td>
<td>12.5-37.5 mg q6h</td>
<td></td>
</tr>
<tr>
<td>Fosampren-avir</td>
<td>1400 mg q12h<sup>40</sup></td>
<td></td>
</tr>
<tr>
<td>Foscarnet</td>
<td>60 mg/kg q8h or 90 mg/kg q12h<sup>41</sup></td>
<td></td>
</tr>
<tr>
<td>Fosfomycin</td>
<td>3 g once</td>
<td></td>
</tr>
<tr>
<td>Furazolidone</td>
<td>100 mg q6h</td>
<td>6 mg/kg/d div q6h</td>
</tr>
<tr>
<td>Ganciclovir</td>
<td>1 g q8h</td>
<td>5 mg/kg<sup>42</sup> q12h</td>
</tr>
<tr>
<td>Gatifloxacin</td>
<td>200-400 mg q24h</td>
<td>200-400 mg q24h</td>
</tr>
<tr>
<td>Gemifloxacin</td>
<td>320 mg q24h</td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>1-2.5 mg/kg q8h or 5-7 mg/kg q24h<sup>3</sup></td>
<td>1-2.5 mg/kg q8h<sup>3</sup></td>
</tr>
</tbody>
</table>

34. Dose for nucleoside-naive patients ≥16 years old. For patients refractory to lamivudine, regular dosage is 1 mg once daily and dosage in renal failure is CrCl 50-10: 0.3-0.5 mg q24h; CrCl <10: 0.1 mg q24h.

35. If the 500-mg dose is given within 6 hours prior to HD, a supplemental dose of 150 mg is recommended after HD. If the 500-mg dose is given >6 hours before HD, no supplemental dose is needed.

36. By slow infusion to minimize thrombophlebitis.

37. Not recommended in children whose visual acuity cannot be monitored (<6 years old).

38. For herpes zoster. For first episode genital herpes, the dosage is 250 mg q8h. For genital herpes recurrence, it is 125 mg q12h. For suppression of genital herpes, it is 250 mg q12h.

39. If treatment is essential, begin with 15-25 mg/kg q24h and adjust daily dose to maintain the plasma concentration between 50 and 75 mcg/mL.
<table>
<thead>
<tr>
<th>Usual Maximum Dose/Day</th>
<th>Dose</th>
<th>80-50</th>
<th>50-10</th>
<th><10</th>
<th>Extra Dose After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mg</td>
<td>No change</td>
<td>0.15-0.25 mg<sup>34</sup> q24h</td>
<td>0.05 mg<sup>34</sup> q24h</td>
<td>no*</td>
<td></td>
</tr>
<tr>
<td>1 g</td>
<td>No change</td>
<td>CrCl <30: 500 mg q24h</td>
<td>500 mg q24h</td>
<td>yes<sup>35</sup></td>
<td></td>
</tr>
<tr>
<td>4 g</td>
<td>Change not required</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 g</td>
<td>20 mg/kg</td>
<td>No change</td>
<td>q24-36h</td>
<td>q48h</td>
<td>no*</td>
</tr>
<tr>
<td>1 g</td>
<td>No change</td>
<td>No change</td>
<td>500 mg q24h</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>1.5 g</td>
<td>500 mg</td>
<td>q12h</td>
<td>q24h</td>
<td>Not recommended</td>
<td>yes</td>
</tr>
<tr>
<td>400 mg</td>
<td>100-400 mg</td>
<td>No change</td>
<td>q48h</td>
<td>q72h</td>
<td>yes</td>
</tr>
<tr>
<td>150 mg/kg</td>
<td>12.5-37.5 mg/kg</td>
<td>No change</td>
<td>q12-24h</td>
<td>Not recommended<sup>39</sup></td>
<td>yes</td>
</tr>
<tr>
<td>2.8 g</td>
<td>Change not required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See package insert

| 3 g | Change not required | |
| | Unknown | |

10 mg/kg	IV	2.5 mg/kg⁴² q12h	1.25-2.5 mg/kg⁴² q24h	1.25 mg/kg⁴² 3x/wk	no*
3 g	PO	0.5-1 g tid	0.5-1 g q24h	500 mg 3x/wk	no*
400 mg	No change	400 mg once then 200 mg q24h	400 mg once then 200 mg q24h	no*	
320 mg	No change	160 mg q24h	160 mg q24h	no*	
1.5 mg/kg	1.5 mg/kg	q8-12h	q12-24h	See footnote 3	yes

* But give usual dose after dialysis.
40. For therapy-naive patients. May also be given as 1,400 mg once daily with ritonavir 200 mg once daily or 700 mg twice daily with ritonavir 100 mg twice daily. The dose for protease inhibitor-experienced patients is 700 mg bid with ritonavir 100 mg bid.
41. For induction therapy of CMV, given over at least one hour; for maintenance, 90-120 mg/kg daily over two hours. For HSV or VZV, 40 mg/kg q8h.
42. Dosage for CMV induction (give IV at constant rate over one hour); for IV maintenance without renal failure: 5 mg/kg once daily 7 days/week or 6 mg/kg once daily 5 days/week; for IV maintenance with renal failure: induction dose is reduced by half.
43. According to The American Academy of Pediatrics, although fluoroquinolones are generally contra-indicated in children <18 years old, their use may be justified in special circumstances, such as when no other oral agent is available.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Adults</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
<td>Parenteral</td>
</tr>
<tr>
<td></td>
<td>mg q24h</td>
<td>mg q24h</td>
</tr>
<tr>
<td>Griseofulvin</td>
<td>500-1000 mg</td>
<td>11 mg/kg</td>
</tr>
<tr>
<td>microsize</td>
<td>q24h</td>
<td>q24h</td>
</tr>
<tr>
<td>Ultra-</td>
<td>330-660 mg</td>
<td>7.25 mg/kg</td>
</tr>
<tr>
<td>microsize</td>
<td>q24h</td>
<td></td>
</tr>
<tr>
<td>**Imipenem/</td>
<td>250 mg-1 g</td>
<td>15-25 mg/kg</td>
</tr>
<tr>
<td>Cilastin**</td>
<td>q6-8h</td>
<td>q6h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

44. Dose adjustment is necessary when administered with other drugs including delavirdine, efavirenz, lopinavir/ritonavir and ritonavir.

45. For chronic hepatitis C in adults. For acute hepatitis C in adults the dosage is 5 MIU 24h x 3 weeks, then TIW. For chronic hepatitis B the dosage of interferon alfa-2b is 5 MIU 24h or 10 MIU TIW for adults and for children it is 3-6 MIU/m² TIW.
<table>
<thead>
<tr>
<th>Usual Maximum Dose/Day</th>
<th>Adult Dosage in Renal Failure For Creatinine Clearance (mL/min)</th>
<th>Extra Dose After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80-50</td>
<td>50-10</td>
</tr>
<tr>
<td>1 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>660 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 g</td>
<td>250-500 mg</td>
<td>q6-8h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 MIU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 g</td>
<td>5-7.5 mg/kg</td>
<td>q24h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750 mg</td>
<td>500 mg</td>
<td>No change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* But give usual dose after dialysis.

46. For treatment of HIV. For treatment of hepatitis B, the dose of lamivudine is 100 mg/d in patients with normal renal function and dosage in renal failure is CrCl 50-15: 100 mg x 1, then 25-50 mg/d; CrCl <15: 35 mg x 1, then 15-25 mg/d.

47. For life-threatening infections, dosage may be increased to a maximum of 8 g/d.

48. For children up to 11 years of age. Pediatric patients >12 years should receive 600 mg q12h.
Antimicrobial Drug Dosage† (continued)

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th>Parenteral</th>
<th>Children</th>
<th>Oral</th>
<th>Parenteral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopinavir/ritonavir</td>
<td>400 mg/100 mg q12h<sup>49</sup> or 800 mg/200 mg q24h<sup>50</sup></td>
<td>7-15 kg: 12/3 mg/kg q12h<sup>49</sup> 15-40 kg: 10/2.5 mg/kg q12h<sup>49</sup> >40 kg or 12 yrs: 400/100 mg q12h<sup>49</sup></td>
<td>7-15 kg: 12/3 mg/kg q12h<sup>49</sup> 15-40 kg: 10/2.5 mg/kg q12h<sup>49</sup> >40 kg or 12 yrs: 400/100 mg q12h<sup>49</sup></td>
<td>7.5 mg/kg q12h<sup>49</sup></td>
<td></td>
</tr>
<tr>
<td>Loracarbef</td>
<td>200-400 mg q12h</td>
<td>100-200 mg q12h</td>
<td>7.5 mg/kg q12h</td>
<td>200-400 mg q12h</td>
<td>100-200 mg q12h</td>
</tr>
<tr>
<td>Mebendazole</td>
<td>1250 mg, once<sup>51</sup></td>
<td>15 mg/kg, once<sup>51</sup></td>
<td>200 mg, once<sup>51</sup></td>
<td>15 mg/kg, once<sup>51</sup></td>
<td>200 mg, once<sup>51</sup></td>
</tr>
<tr>
<td>Mefloquine</td>
<td>1250 mg, once<sup>51</sup></td>
<td>15 mg/kg, once<sup>51</sup></td>
<td>200 mg, once<sup>51</sup></td>
<td>15 mg/kg, once<sup>51</sup></td>
<td>200 mg, once<sup>51</sup></td>
</tr>
<tr>
<td>Meropenem</td>
<td>1-2 g q8h</td>
<td>12.5-25 mg/kg q12h</td>
<td>20-40 mg/kg q8h</td>
<td>12.5-18.75 mg/kg q6h</td>
<td>20-40 mg/kg q6h</td>
</tr>
<tr>
<td>Methenamine hippurate</td>
<td>1 g q12h</td>
<td>12.5-25 mg/kg q12h</td>
<td>200-400 mg q12h</td>
<td>12.5-18.75 mg/kg q6h</td>
<td>200-400 mg q6h</td>
</tr>
<tr>
<td>Methenamine mandelate</td>
<td>1 g q6h</td>
<td>12.5-18.75 mg/kg q6h</td>
<td>200-400 mg q12h</td>
<td>12.5-18.75 mg/kg q6h</td>
<td>200-400 mg q12h</td>
</tr>
<tr>
<td>Metronidazole<sup>10</sup></td>
<td>500 mg q6-8h<sup>52</sup></td>
<td>500 mg q6-8h<sup>52</sup></td>
<td>7.5 mg/kg q6-8h<sup>52</sup></td>
<td>7.5 mg/kg q6-8h<sup>52</sup></td>
<td>7.5 mg/kg q6-8h<sup>52</sup></td>
</tr>
<tr>
<td>Micafungin</td>
<td>150 mg q24h<sup>53</sup></td>
<td>600 mg q8h<sup>53</sup></td>
<td>20-40 mg/kg q8h</td>
<td>6.6-13.3 mg/kg q8h</td>
<td>6.6-13.3 mg/kg q8h</td>
</tr>
<tr>
<td>Miconazole<sup>54</sup></td>
<td>600 mg-1.2 g q8h</td>
<td>400 mg-1.2 g q8h</td>
<td>6.6-13.3 mg/kg q8h</td>
<td>6.6-13.3 mg/kg q8h</td>
<td>6.6-13.3 mg/kg q8h</td>
</tr>
<tr>
<td>Minocycline</td>
<td>200 mg x1, then 100 mg q12h</td>
<td>200 mg x1, then 100 mg q12h</td>
<td>4 mg/kg x1, 2 mg/kg q12h<sup>53</sup></td>
<td>4 mg/kg x1, 2 mg/kg q12h<sup>53</sup></td>
<td>4 mg/kg x1, 2 mg/kg q12h<sup>53</sup></td>
</tr>
<tr>
<td>Moxifloxacin<sup>10</sup></td>
<td>400 mg q24h</td>
<td>400 mg q24h</td>
<td>See footnote 43</td>
<td>400 mg q24h</td>
<td>See footnote 43</td>
</tr>
<tr>
<td>Nafcillin</td>
<td>500 mg-2 g q4-6h</td>
<td>500 mg-2 g q4-6h</td>
<td>25-50 mg/kg q6h</td>
<td>500 mg-2 g q4-6h</td>
<td>25-50 mg/kg q6h</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>1 g q6h</td>
<td>Not recommended</td>
<td>1 g q6h</td>
<td>Not recommended</td>
<td>1 g q6h</td>
</tr>
<tr>
<td>Nelfinavir<sup>10</sup></td>
<td>750 mg q8h or 1250 mg q12h</td>
<td>25-30 mg/kg q8h</td>
<td>25-30 mg/kg q8h</td>
<td>25-30 mg/kg q8h</td>
<td>25-30 mg/kg q8h</td>
</tr>
<tr>
<td>Nevirapine</td>
<td>200 mg/d x14, followed by 200 mg bid</td>
<td><8 yrs: 4 mg/kd/d x14, followed by 7 mg/kg bid</td>
<td>25-30 mg/kg q8h</td>
<td>≥8 yrs: 4 mg/kd/d x14, followed by 4 mg/kg bid</td>
<td>25-30 mg/kg q8h</td>
</tr>
</tbody>
</table>

49. A dose increase is necessary if coadministered with nevirapine or efavirenz in treatment-experienced patients when reduced susceptibility to lopinavir is suspected.
50. For treatment-naive patients. Should not be administered as once/d regimen in combination with efavirenz, nevirapine, amprenavir or nelfinavir.
51. Dosage for treatment of malaria; given as 750 mg followed 12 hrs later by 500 mg for adults and 15 mg/kg followed 12 hrs later by 10 mg/kg for children. Dosage for once/wk prophylaxis of malaria; adults, 250 mg; children, 5 mg/kg (<5 kg), 1/8 tab (5-10 kg), 1/4 tab (11-20 kg), 1/2 tab (21-30 kg), 3/4 tab (31-45 kg), 1 tab (>45 kg).
<table>
<thead>
<tr>
<th>Usual Maximum Dose/Day</th>
<th>Adult Dosage in Renal Failure For Creatinine Clearance (mL/min)</th>
<th>Extra Dose After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose 80-50 50-10 <10</td>
<td></td>
</tr>
<tr>
<td>800 mg/200 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>800 mg</td>
<td>No change 200-400 mg q24h 200-400 mg q3-5 days</td>
<td>yes</td>
</tr>
<tr>
<td>400 mg</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>1250 mg</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>6 g</td>
<td>No change 0.5-1 g q12h 0.5 g q24h</td>
<td>no*</td>
</tr>
<tr>
<td>4 g</td>
<td>No change</td>
<td>Not recommended</td>
</tr>
<tr>
<td>4 g</td>
<td>No change</td>
<td>Not recommended</td>
</tr>
<tr>
<td>4 g</td>
<td>Change not required no*</td>
<td></td>
</tr>
<tr>
<td>3.6 g</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td>200 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>400 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>12 g</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td>4 g</td>
<td>No change No change Not recommended</td>
<td></td>
</tr>
<tr>
<td>2.5 g</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>400 mg</td>
<td>Change not required</td>
<td></td>
</tr>
</tbody>
</table>

* But give usual dose after dialysis.

52. Dosage for anaerobic bacterial infections. For antiparasitic dosages, see Drugs for Parasitic Infections, page 179.
53. For treatment of esophageal candidiasis. The dose for prophylaxis of Candida infections in HSCT is 50 mg/d.
54. The manufacturer recommends an initial test dose of 200 mg.

269
Antimicrobial Drug Dosage (continued)

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th>Parenteral</th>
<th>Children</th>
<th>Parenteral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>Parenteral</td>
<td>Oral</td>
<td>Parenteral</td>
<td></td>
</tr>
<tr>
<td>Nitazoxanide</td>
<td>500 mg q12h</td>
<td>100 mg q12h</td>
<td>4-11 yrs: 200 mg q12h</td>
<td></td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>50-100 mg q6h</td>
<td>1.25-1.75 mg/kg q6h</td>
<td></td>
<td>See footnote 43</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>400 mg q12h</td>
<td>200-400 mg q12h</td>
<td>See footnote 43</td>
<td></td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>200-400 mg q12h</td>
<td>200-400 mg q12h</td>
<td>See footnote 43</td>
<td></td>
</tr>
<tr>
<td>Oseltamivir</td>
<td>75 mg q12h</td>
<td>≤15 kg: 30 mg q12h</td>
<td>16-23 kg: 45 mg q12h</td>
<td>24-40 kg: 60 mg q12h</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>500 mg-1 g q6h</td>
<td>500 mg-2 g q4-6h</td>
<td>12.5-25 mg/kg q6h</td>
<td>25-50 mg/kg q6h</td>
</tr>
<tr>
<td>Paromomycin</td>
<td>25-35 mg/kg/d q4-6h</td>
<td>25-35 mg/kg/d q8h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillin G</td>
<td>250-500 mg q6h</td>
<td>1.2-24 million U/d, div q2-12h</td>
<td>6.25-12.5 mg/kg q6h</td>
<td>100,000-250,000 U/d, div q2-12h</td>
</tr>
<tr>
<td>Penicillin V</td>
<td>250-500 mg q6h</td>
<td>6.25-12.5 mg/kg q6h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentamidine</td>
<td>4 mg/kg q24h</td>
<td>4 mg/kg q24h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piperacillin</td>
<td>3-4 g q4-6h</td>
<td>200-300 mg/kg/d, div q4-6h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piperacillin/ tazobactam</td>
<td>3.375 g q4-6h or 4.5 g q6-8h</td>
<td>240 mg/kg/d piperacillin div q8h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxin B</td>
<td>15-20,000 U/kg/d IV, div q12h</td>
<td>15-20,000 U/kg/d IV, div q12h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Praziquantel</td>
<td>20-25 mg/kg q8-12h</td>
<td>20-25 mg/kg q8-12h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primaquine</td>
<td>30 mg base q24h</td>
<td>0.6 mg base/kg q24h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrantel pamoate</td>
<td>11 mg/kg q24h</td>
<td>11 mg/kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

55. For treatment of influenza. Dosage may be given once daily for influenza prophylaxis.
56. The interval between parenteral doses can be as short as 2 hours for initial intravenous treatment of meningococcemia, or as long as 12 hours between intramuscular doses of penicillin G procaine.
57. Patients with severe renal insufficiency should be given no more than one third to one half the maximum daily dosage, i.e., instead of giving 24 million units per day, 10 million units could be given. Patients on lower doses usually tolerate full dosage even with severe renal insufficiency.
<table>
<thead>
<tr>
<th>Usual Maximum Dose/Day</th>
<th>Adult Dosage in Renal Failure For Creatinine Clearance (mL/min)</th>
<th>Extra Dose After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80-50</td>
<td>50-10</td>
</tr>
<tr>
<td>1 g</td>
<td>Use with caution</td>
<td></td>
</tr>
<tr>
<td>400 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800 mg</td>
<td>400 mg</td>
<td>No change</td>
</tr>
<tr>
<td>800 mg</td>
<td>No change</td>
<td>200-400 mg q24h</td>
</tr>
<tr>
<td>150 mg</td>
<td>75 mg</td>
<td>No change</td>
</tr>
<tr>
<td>12 g</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td>24 million units</td>
<td>Change not required</td>
<td>See footnote 57</td>
</tr>
<tr>
<td>4 g</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 mg/kg</td>
<td>q24h</td>
</tr>
<tr>
<td>24 g</td>
<td>3-4 g</td>
<td>No change</td>
</tr>
<tr>
<td></td>
<td>No change</td>
<td>2.25-3.375 g q6h</td>
</tr>
<tr>
<td></td>
<td>No change</td>
<td>50%-100% usual dose</td>
</tr>
<tr>
<td></td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>30 mg base</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>1 g</td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

58. For treatment of PCP, for prophylaxis of PCP, the dosage for adults and children ≥5 years is 300 mg inhaled monthly via nebulizer.
59. Combination formulation: A 2.25-g vial contains 2 g piperacillin/250 mg tazobactam; a 3.375-g vial contains 3 g piperacillin/375 mg tazobactam; a 4.5-g vial contains 4 g piperacillin/500 mg tazobactam.
60. For children ≥2 years old. Infants can receive up to 40,000 U/kg/d.
Antimicrobial Drug Dosage† (continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adults</th>
<th>Parenteral</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
<td>Parenteral</td>
<td>Oral</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>15-30 mg/kg q24h</td>
<td></td>
<td>15-30 mg/kg q24h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrimethamine</td>
<td>25-100 mg q24h</td>
<td>0.5-1 mg/kg q12h</td>
<td></td>
</tr>
<tr>
<td>Pyrimethamine/sulfadoxine</td>
<td>75/1500 mg once</td>
<td>See footnote 62</td>
<td></td>
</tr>
<tr>
<td>Quinidine gluconate</td>
<td>10 mg/kg then 0.02 mg/kg/min</td>
<td>10 mg/kg then 0.02 mg/kg/min</td>
<td></td>
</tr>
<tr>
<td>Quinine sulfate</td>
<td>650 mg q8h</td>
<td>10 mg/kg q8h</td>
<td></td>
</tr>
<tr>
<td>Quinupristin/dalfopristin</td>
<td>7.5 mg/kg q8-12h</td>
<td>7.5 mg/kg q8-12h</td>
<td></td>
</tr>
<tr>
<td>Ribavirin</td>
<td>75 kg: 400 mg q AM and 600 mg q PM >75 kg: 600 mg bid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifabutin</td>
<td>150 mg q12h or 300 mg q24h</td>
<td>5-20 mg/kg/d</td>
<td></td>
</tr>
<tr>
<td>Rifampin<sup>10</sup></td>
<td>600 mg q24h<sup>64</sup></td>
<td>600 mg q24h<sup>64</sup></td>
<td>10-20 mg/kg q24h<sup>64</sup></td>
</tr>
<tr>
<td>Rifampin/isoniazid<sup>65</sup></td>
<td>600/300 mg q24h<sup>65</sup></td>
<td></td>
<td>10-20 mg/kg q24h<sup>64</sup></td>
</tr>
<tr>
<td>Rifampin/isoniazid/pyrazinamide<sup>65</sup></td>
<td>≤44 kg: 4 tabs<sup>66</sup> 45-54 kg: 5 tabs 55-90 kg: 6 tabs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifapentine</td>
<td>600 mg once wkly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifaxim<sup>10</sup></td>
<td>200 mg q8h</td>
<td>≥12 yrs: 200 mg q8h</td>
<td></td>
</tr>
<tr>
<td>Rimantadine<sup>10</sup></td>
<td>100 mg once or q12h</td>
<td>5 mg/kg once</td>
<td></td>
</tr>
<tr>
<td>Ritonavir<sup>10</sup></td>
<td>600 mg q12h<sup>67</sup></td>
<td>400 mg/m<sup>2</sup> q12h</td>
<td></td>
</tr>
<tr>
<td>Saquinavir<sup>68</sup></td>
<td>1200 mg q8h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectinomycin</td>
<td>2 g once</td>
<td>40 mg/kg once</td>
<td></td>
</tr>
<tr>
<td>Stavudine<sup>10</sup></td>
<td>≥60 kg: 40 mg q12h</td>
<td>≥30 kg: 30 mg q12h</td>
<td><30 kg: 1 mg/kg q12h</td>
</tr>
<tr>
<td></td>
<td><60 kg: 30 mg q12h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

61. For treatment of toxoplasmosis. Leucovorin should be administered with pyrimethamine.
62. Each tablet contains 25 mg pyrimethamine/500 mg sulfadoxine. Pediatric dose: <1 yr: 1/4 tab; 1-3 yrs: 1/2 tab; 4-8 yrs: 1 tab; 9-14 yrs: 2 tabs.
63. Loading dose should be decreased or omitted in patients who have received quinine or mefloquine. If >48 hours IV treatment required, dose should be reduced by 30-50%.
64. For meningococcal carriers, dosage is 600 mg bid x 2 days for adults, 10 mg/kg q12h x 2 days for children more than one month old, and 5 mg/kg q12h x 2 days for infants less than one month old.
<table>
<thead>
<tr>
<th>Usual Maximum Dose/Day</th>
<th>Adult Dosage in Renal Failure For Creatinine Clearance (mL/min)</th>
<th>Extra Dose After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose 80-50 50-10 <10</td>
<td></td>
</tr>
<tr>
<td>2 g</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>100 mg</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td>75/1500 mg</td>
<td>Use with caution</td>
<td></td>
</tr>
<tr>
<td>600 mg</td>
<td>No change 75% of usual dose</td>
<td>yes</td>
</tr>
<tr>
<td>650 mg</td>
<td>No change q8-12h q24h</td>
<td>no*</td>
</tr>
<tr>
<td>Unknown</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>1200 mg</td>
<td>No change Not recommended</td>
<td></td>
</tr>
<tr>
<td>300 mg</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td>600 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>600/300 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>600 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>600 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>200 mg</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td>1200 mg</td>
<td>Change not required</td>
<td>no</td>
</tr>
<tr>
<td>3600 mg</td>
<td>Change not required</td>
<td></td>
</tr>
<tr>
<td>80 mg</td>
<td>No change 20 mg q12-24h 15 mg q12-24h</td>
<td>Not recommended</td>
</tr>
</tbody>
</table>

* But give usual dose after dialysis.
65. Pyridoxine 10-25 mg should be added to prevent neuropathy in malnourished or pregnant patients and those with HIV infection, alcoholism or diabetes.
66. Each tablet contains rifampin 120 mg, isoniazid 50 mg, and pyrazinamide 300 mg. For patients >90 kg - 6 tabs plus additional pyrazinamide to achieve total of 20-25 mg/kg/d.
67. When used in combination with other protease inhibitors the ritonavir dose is 100-400 mg PO b.i.d.
68. Soft gelatin capsules.
Antimicrobial Drug Dosage† (continued)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adults</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
<td>Parenteral</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>15 mg/kg q24h<sup>69</sup> or 25-30 mg/kg 2-3x/wk</td>
<td>20-40 mg/kg q24h<sup>69</sup></td>
</tr>
<tr>
<td>Sulfadiazine<sup>70</sup></td>
<td>1-1.5 g q6h</td>
<td>25-50 mg/kg q6h</td>
</tr>
<tr>
<td>Sulfisoxazole</td>
<td>500 mg-1 g q6h</td>
<td>25 mg/kg q6h</td>
</tr>
<tr>
<td>Telithromycin</td>
<td>800 mg q24h</td>
<td></td>
</tr>
<tr>
<td>Tenofovir</td>
<td>300 mg q24h</td>
<td></td>
</tr>
<tr>
<td>Terbinafine</td>
<td>250 mg q24h</td>
<td></td>
</tr>
<tr>
<td>Tetracycline<sup>72</sup></td>
<td>250-500 mg q6h</td>
<td>6.25-12.5 mg/kg q6h<sup>33</sup></td>
</tr>
<tr>
<td>Thiabendazole</td>
<td>50 mg/kg/d div q12h</td>
<td>50 mg/kg/d div q12h</td>
</tr>
<tr>
<td>Ticarcillin</td>
<td>200-300 mg/kg/d div q4-6h</td>
<td>200-300 mg/kg/d div q4-6h</td>
</tr>
<tr>
<td>Ticarcillin/ clavulanic acid<sup>73</sup></td>
<td>3.1 g q4-6h</td>
<td>200-300 mg/kg/d div q4-6h</td>
</tr>
<tr>
<td>Tigecycline<sup>10</sup></td>
<td>100 mg x1, then 50 mg q12h</td>
<td>See footnote 33</td>
</tr>
<tr>
<td>Tinidazole<sup>74</sup></td>
<td>2 g q24h</td>
<td>50 mg/kg q24h</td>
</tr>
<tr>
<td>Tipranavir/ ritonavir</td>
<td>500/200 mg q12h</td>
<td></td>
</tr>
<tr>
<td>Tobramycin</td>
<td>1-2.5 mg/kg q8h or 5-7 mg/kg q24h<sup>3</sup></td>
<td>1-2.5 mg/kg q8h<sup>3</sup></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>100 mg q12h or 200 mg q24h</td>
<td>2 mg/kg q12h</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole (TMP-SMX)</td>
<td>1 SS tab<sup>75</sup> q6h or 2 SS tabs q12h<sup>75</sup></td>
<td>4-5 mg/kg (TMP) q6-12h</td>
</tr>
<tr>
<td>Valacyclovir</td>
<td>1 g q8h<sup>77</sup></td>
<td></td>
</tr>
</tbody>
</table>

⁶⁹ Given IM for tuberculosis. Dose for endocarditis: 500 mg-1 g q12h.

⁷⁰ Given in conjunction with pyrimethamine for toxoplasmosis.

⁷¹ AUC increased 1.9 fold in patients with CrCl <30 mL/min.

⁷² Tetracycline or oxytetracycline. The oral dose of demeclocycline for adults is 600 mg daily in two to four divided doses.

⁷³ Combination formulation: a 3.1-g vial contains 3 g ticarcillin/100 mg clavulanic acid.

⁷⁴ For 3-5 days for amebiasis. For treatment of giardiasis and trichomoniasis, the dose is 2 g once.
Usual Maximum Dose/Day

<table>
<thead>
<tr>
<th>Usual Maximum Dose/Day</th>
<th>Dose</th>
<th>80-50</th>
<th>50-10</th>
<th><10</th>
<th>Extra Dose After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 g</td>
<td></td>
<td>q24h</td>
<td>q24-72h</td>
<td>q72-96h</td>
<td>yes</td>
</tr>
<tr>
<td>6 g</td>
<td></td>
<td></td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 g</td>
<td>0.5-1 g</td>
<td>q6-8h</td>
<td>q8-12h</td>
<td>q12-24h</td>
<td>yes</td>
</tr>
<tr>
<td>800 mg</td>
<td></td>
<td>No change</td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 mg</td>
<td></td>
<td>No change</td>
<td>Not recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 mg</td>
<td></td>
<td>No change</td>
<td>Not recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 g</td>
<td></td>
<td></td>
<td>Not recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 g</td>
<td></td>
<td></td>
<td>Unknown; use with caution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-30 g</td>
<td>2-3 g</td>
<td>q4-6h</td>
<td>q6-8h</td>
<td>2 g q12h</td>
<td>yes</td>
</tr>
<tr>
<td>18 g</td>
<td></td>
<td>No change</td>
<td>2 g q4-8h</td>
<td>2 g q12h</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change not required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 g</td>
<td></td>
<td>Change not required</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 g/400 mg</td>
<td></td>
<td>Change not required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 mg/kg</td>
<td>q8-12h</td>
<td>q12-24h</td>
<td>See footnote 3</td>
<td>yes</td>
</tr>
<tr>
<td>200 mg</td>
<td>100 mg</td>
<td>No change</td>
<td>q18h</td>
<td>q24h</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>See footnote 76</td>
<td>4-5 mg/kg (TMP)</td>
<td>q12h</td>
<td>q18h</td>
<td>Not recommended</td>
</tr>
<tr>
<td>3 g</td>
<td></td>
<td>1 g q8h</td>
<td>1 g q12-24h</td>
<td>500 mg q24h</td>
<td></td>
</tr>
</tbody>
</table>

75. Each SS tablet contains 80 mg trimethoprim and 400 mg sulfamethoxazole. Double-strength tablets are also available; the usual dosage of these is 1 tablet q12h. Suspension contains 40 mg trimethoprim and 200 mg sulfamethoxazole per 5 mL.

76. The usual maximum daily dose is 4 tablets orally or 1200 mg trimethoprim with 6000 mg sulfamethoxazole IV.

77. For herpes zoster. For a first episode of genital herpes, the dosage is 1 g q12h. For recurrence of genital herpes, it is 500 mg q12h. For suppression of genital herpes, it is 1 g q24h.
Valganciclovir

- **Induction:** 900 mg q12h
- **Maintenance:** 900 mg q24h

Vancomycin

- 125-500 mg q6h
- 1 g IV q12h

Voriconazole

- ≥40 kg: Loading: 200 mg bid
- <40 kg: Loading: 100 mg bid

- Maintenance: 6 mg/kg q12h x 2

Zalcitabine (ddC)

- 0.375-0.75 mg q8h
- 0.005 to 0.01 mg/kg q8h

Zanamivir

- 10 mg q12h
- >7 yrs: 10 mg q12h by inhalation

Zidovudine (AZT)

- 200 mg q8h or 300 mg q12h

- 90-180 mg/m² q6-8h

Zidovudine/lamivudine

- 300/150 mg q12h

- >12 yrs: 300/150 mg q12h

78. Vancomycin should be infused over a period of at least 60 minutes.
79. Only for treatment of pseudomembranous colitis.
80. Sixty mg/kg/d may be needed for staphylococcal central-nervous-system infections.
81. IV loading dose of 6 mg/kg q12h x 2 doses is recommended prior to oral maintenance. Dose may be increased to 300 mg q12h (if ≥40 kg) and 150 mg q12h (if <40 kg).

Oral	**Parenteral**
Valganciclovir	Induction: 900 mg q12h
Maintenance: 900 mg q24h	
See footnote 22	
Vancomycin	125-500 mg q6h
1 g q12h	
12.5 mg/kg q6h	
10 mg/kg IV q6h	
Voriconazole	≥40 kg: Loading: 200 mg bid
6 mg/kg q12h x 2	
4 mg/kg q12h	
See footnote 83	
Zalcitabine (ddC)	0.375-0.75 mg q8h
0.005 to 0.01 mg/kg q8h	
Zanamivir	10 mg q12h by inhalation
>7 yrs: 10 mg q12h by inhalation	
Zidovudine (AZT)	200 mg q8h or 300 mg q12h
90-180 mg/m² q6-8h	
Zidovudine/lamivudine	300/150 mg q12h
>12 yrs: 300/150 mg q12h	
Zidovudine/lamivudine/abacavir	300/150/300 mg q12h
150 mg q12h	
<table>
<thead>
<tr>
<th>Usual Maximum Dose/Day</th>
<th>Adult Dosage in Renal Failure For Creatinine Clearance (mL/min)</th>
<th>Extra Dose After Hemodialysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose</td>
<td>80-50</td>
</tr>
<tr>
<td>1800 mg</td>
<td>Induction:</td>
<td>450 mg</td>
</tr>
<tr>
<td></td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance:</td>
<td>450 mg</td>
</tr>
<tr>
<td></td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>1 g</td>
<td>q12-24h</td>
<td>q24h</td>
</tr>
<tr>
<td>2.25 mg</td>
<td>0.75 mg</td>
<td>No change</td>
</tr>
<tr>
<td>20 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 mg</td>
<td></td>
<td>No change</td>
</tr>
<tr>
<td>600/300 mg</td>
<td>300/150 mg</td>
<td></td>
</tr>
<tr>
<td>600/300/600 mg</td>
<td>300/150 mg</td>
<td></td>
</tr>
</tbody>
</table>

* But give usual dose after dialysis.

82. In patients also taking phenytoin, maintenance dose should be increased to 5 mg/kg q12h IV or 400 mg q12h PO.

84. Cyclodextrin (IV vehicle) accumulates in patients with CrCl <50 mL/min. Oral voriconazole is recommended in these patients.
SAFETY OF ANTIMICROBIAL DRUGS IN PREGNANCY

Use of antimicrobial drugs during pregnancy is a frequent cause for concern. The table that follows summarizes the known prenatal risks of many antimicrobials, but the teratogenic potential of many agents remains unknown. The recommendations in the table are based on published data, the opinions of Medical Letter consultants, and on the importance of the drug and the availability of alternatives. Adverse effects not particularly related to pregnancy are not included here; they are summarized in the chapter beginning on page 238. Serum levels of some renally excreted drugs (e.g. β-lactams, aminoglycosides) are decreased by 10% to 50% in late pregnancy. For serious infections, maximal recommended doses should be used and serum levels may need to be monitored (OM Korzeniowski, Infect Dis Clin North Am 1995; 9:639).

SOME ANTIMICROBIAL AGENTS IN PREGNANCY

<table>
<thead>
<tr>
<th>Drug</th>
<th>Toxicity in Pregnancy</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin (Amikin)</td>
<td>Possible 8th-nerve toxicity in fetus</td>
<td>Caution*</td>
</tr>
<tr>
<td>Azithromycin (Zithromax)</td>
<td>None known</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Aztreonam (Azactam)</td>
<td>None known</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Cephalosporins1</td>
<td>None known</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Chloramphenicol (Chloromycetin, and others)</td>
<td>Unknown – gray syndrome in newborn</td>
<td>Caution*, especially at term</td>
</tr>
<tr>
<td>Cinoxacin (Cinobac, and others)</td>
<td>Arthropathy in immature animals</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Clarithromycin (Biaxin)</td>
<td>Teratogenic in animals</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Clindamycin (Cleocin, and others)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Dapsone</td>
<td>None known; carcinogenic in rats and mice; hemolytic reactions in neonates</td>
<td>Caution*, especially at term</td>
</tr>
<tr>
<td>Daptomycin (Cubicin)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Dirithromycin (Dynabac)</td>
<td>Retarded fetal development in rodents with high doses</td>
<td>Caution*</td>
</tr>
</tbody>
</table>

* Use only for strong clinical indication in absence of suitable alternative.
1. Cefaclor (Ceclor, others), cefadroxil (Duricef, others), cefamandole (Mandol), cefazolin (Ancef, others), cefepime (Maxipime), cefdinir (Omnicef), cefditoren (Spectracef), cefixime (Suprax), cefonicid (Monocid), cefoperazone (Cefobid), cefotaxime (Claforan), cefotetan (Cefotan), cefoxitin (Mefoxin), cefpodoxime (Vantin), cefprozil (Cefzil), ceftriaxone (Fortaz, others), ceftibuten (Cedax), ceftizoxime (Cefizox), ceftriaxone (Rocephin), cefuroxime (Keferox, Zinacef), cefuroxime axetil (Cefxin), cephalixin (Kelex, others), cephapirin (Cefadyl, others), cephadrine (Velosef, others), loracarbef (Lorabid). Experience with newer agents is limited.
Safety of Antimicrobial Drugs in Pregnancy

<table>
<thead>
<tr>
<th>Drug</th>
<th>Toxicity in Pregnancy</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ertapenam (Invanz)</td>
<td>Decreased total weight in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Erythromycin estolate (Illosone, and others)</td>
<td>Risk of cholestatic hepatitis appears to be increased in pregnant women</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Erythromycin (Ery-Tab, and others)</td>
<td>None known; neonatal use has been associated with pyloric stenosis</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Fosfomycin (Monurol)</td>
<td>Fetal toxicity in rabbits with maternally toxic doses</td>
<td>Caution*</td>
</tr>
<tr>
<td>Fluoroquinolones¹</td>
<td>Arthropathy in immature animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Gentamicin (Garamycin, and others)</td>
<td>Possible 8th-nerve toxicity in fetus</td>
<td>Caution*</td>
</tr>
<tr>
<td>Imipenem-cilastatin (Primaxin)</td>
<td>Toxic in some pregnant animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Kanamycin (Kantrex, and others)</td>
<td>Possible 8th-nerve toxicity in fetus</td>
<td>Caution*</td>
</tr>
<tr>
<td>Linezolid (Zyvox)</td>
<td>Decreased fetal survival in rats</td>
<td>Caution*</td>
</tr>
<tr>
<td>Meropenem (Merrem)</td>
<td>Unknown</td>
<td>Caution*</td>
</tr>
<tr>
<td>Methenamine mandelate (Mandelamine, and others)</td>
<td>Unknown</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Metronidazole (Flagyl, and others)</td>
<td>None known – carcinogenic in rats and mice</td>
<td>Caution*</td>
</tr>
<tr>
<td>Nalidixic acid (NegGram, and others)</td>
<td>Arthropathy in immature animals; increased intracranial pressure in newborn</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Nitrofurantoin (Macrodantin, and others)</td>
<td>Hemolytic anemia in newborn</td>
<td>Caution*; contraindicated at term</td>
</tr>
<tr>
<td>Penicillins³</td>
<td>None known</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Quinupristin/dalfopristin (Synercid)</td>
<td>Unknown</td>
<td>Caution*</td>
</tr>
<tr>
<td>Rifaximin (Xifaxan)</td>
<td>Teratogenic in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Spectinomycin (Trobicin)</td>
<td>Unknown</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>Possible 8th-nerve toxicity in fetus</td>
<td>Caution*</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Teratogenic in some animal studies; hemolysis in newborn with G-6-PD deficiency; increased risk of kernicterus in newborn</td>
<td>Caution*; contraindicated at term</td>
</tr>
<tr>
<td>Telithromycin (Ketek)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
</tbody>
</table>

* Use only for strong clinical indication in absence of suitable alternative.

2. Ciprofloxacin (Cipro, and others), enoxacin (Penetrex), gatifloxacin (Tequin), gemifloxacin (Factive), levofloxacin (Levaquin), lomefloxacin (Maxaquin), moxifloxacin (Avelox), norfloxacin (Noroxin), ofloxacin (Floxin). The older quinolones (ciprofloxacin, ofloxacin, norfloxacin) appear to be safe (R Loebstein et al, Antimicrob Agents Chemother 1998; 42:1336) and could be used for serious infection when there is no alternative.
Safety of Antimicrobial Drugs in Pregnancy

<table>
<thead>
<tr>
<th>Drug</th>
<th>Toxicity in Pregnancy</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracyclines<sup>4</sup></td>
<td>Tooth discoloration and dysplasia, inhibition of bone growth in fetus; hepatic toxicity and azotemia with IV use in pregnant patients with decreased renal function or with overdosage</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Tigecycline (Tygacil)</td>
<td>Decreased fetal weight and delays in bone ossification in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Tobramycin (Nebcin, and others)</td>
<td>Possible 8th-nerve toxicity in fetus</td>
<td>Caution*</td>
</tr>
<tr>
<td>Trimethoprim (Proloprim, and others)</td>
<td>Folate antagonism; teratogenic in rats</td>
<td>Caution*</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole (Bactrim, and others)</td>
<td>Same as sulfonamides and trimethoprim</td>
<td>Caution*; contraindicated at term</td>
</tr>
<tr>
<td>Vancomycin (Vancocin, and others)</td>
<td>Unknown – possible auditory and renal toxicity in fetus</td>
<td>Caution*</td>
</tr>
<tr>
<td>Antifungal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphotericin B (Fungizone, and others)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Caspofungin (Cancidas)</td>
<td>Embryotoxic in animals</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Fluconazole (Diflucan)</td>
<td>Teratogenic</td>
<td>Contraindicated for high-dose; caution* for single dose</td>
</tr>
<tr>
<td>Fluucytosine (Ancobon)</td>
<td>Teratogenic in rats</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Griseofulvin (Fulvicin U/F, and others)</td>
<td>Embryotoxic and teratogenic in animals; carcinogenic in rodents</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Itraconazole (Sporanox)</td>
<td>Teratogenic and embryotoxic in rats</td>
<td>Caution*</td>
</tr>
<tr>
<td>Ketoconazole (Nizoral)</td>
<td>Teratogenic and embryotoxic in rats</td>
<td>Contraindicated; topical probably safe</td>
</tr>
<tr>
<td>Micafungin (Mycamine)</td>
<td>Teratogenic and embryocidal in rabbits</td>
<td>Caution*</td>
</tr>
<tr>
<td>Miconazole (Monistat i.v.)</td>
<td>None known</td>
<td>Caution*; topical probably safe</td>
</tr>
<tr>
<td>Nystatin (Mycostatin, and others)</td>
<td>None known</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Voriconazole (Vfend)</td>
<td>Teratogenic and embryotoxic in animals</td>
<td>Contraindicated</td>
</tr>
</tbody>
</table>

* Use only for strong clinical indication in absence of suitable alternative.

3. Amoxicillin (Amoxil, and others), amoxicillin/clavulanic acid (Augmentin), ampicillin (Principen, and others), ampicillin/sulbactam (Unasyn), carbenicillin indanyl (Geocillin), cloxacillin, dicloxacillin (Dycill, and others), nafcillin (Nafcil, and others), oxacillin, penicillin G, penicillin V, piperacillin (Pipracil), piperacillin/tazobactam (Zosyn), ticarcillin (Ticar), ticarcillin/clavulanic acid (Timentin). Experience with newer agents is limited.

4. Doxycycline (Vibramycin, and others), minocycline (Minocin, and others), oxytetracycline (Terramycin), demeclocycline (Declomycin), tetracycline hydrochloride (Sumycin, and others).
Safety of Antimicrobial Drugs in Pregnancy

<table>
<thead>
<tr>
<th>Drug</th>
<th>Toxicity in Pregnancy</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiparasitic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albendazole (Albenza)</td>
<td>Teratogenic and embryotoxic in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Atovaquone (Mepron)</td>
<td>Maternal and fetal toxicity in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Atovaquone/proguanil (Malarone)</td>
<td>Maternal and fetal toxicity in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Chloroquine (Aralen, and others)</td>
<td>None known with doses recommended for malaria prophylaxis</td>
<td>Probably safe in low doses</td>
</tr>
<tr>
<td>Crotamiton (Eurax)</td>
<td>Unknown</td>
<td>Caution*</td>
</tr>
<tr>
<td>Diloxyanide (Furamide)</td>
<td>Safety not established</td>
<td>Caution*</td>
</tr>
<tr>
<td>Furazolidone (Furoxone)</td>
<td>None known; carcinogenic in rodents; hemolysis with G-6-PD deficiency in newborn</td>
<td>Caution*; contraindicated at term</td>
</tr>
<tr>
<td>Hydroxychloroquine (Plaquenil)</td>
<td>None known with doses recommended for malaria prophylaxis</td>
<td>Probably safe in low doses</td>
</tr>
<tr>
<td>Iodoquinol (Yodoxin, and others)</td>
<td>Unknown</td>
<td>Caution*</td>
</tr>
<tr>
<td>Ivermectin (Stromectol)</td>
<td>Teratogenic in animals</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Lindane</td>
<td>Absorbed from the skin; potential CNS toxicity in fetus</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Malathion, topical (Ovide)</td>
<td>None known</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Mebendazole (Vernox)</td>
<td>Teratogenic and embryotoxic in rats</td>
<td>Caution*</td>
</tr>
<tr>
<td>Mefloquine (Lariam)5</td>
<td>Teratogenic in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Metronidazole (Flagyl, and others)</td>
<td>None known – carcinogenic in rats and mice</td>
<td>Caution*</td>
</tr>
<tr>
<td>Niclosamide (Niclocide)</td>
<td>Not absorbed; no known toxicity in fetus</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Nitazoxanide (Alinia)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Oxamniquine (Vansil)</td>
<td>Embryocidal in animals</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Paromomycin (Humatin)</td>
<td>Poorly absorbed; toxicity in fetus unknown</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Pentamidine (Pentam 300, NebuPent, and others)</td>
<td>Safety not established</td>
<td>Caution*</td>
</tr>
<tr>
<td>Permethrin (Nix, and others)</td>
<td>Poorly absorbed; no known toxicity in fetus</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Piperazine (Antepar, and others)</td>
<td>Unknown</td>
<td>Caution*</td>
</tr>
<tr>
<td>Praziquantel (Biltricide)</td>
<td>Not known</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Primaquine</td>
<td>Hemolysis in G-6-PD deficiency</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Pyrantel pamoate (Antiminth, and others)</td>
<td>Absorbed in small amounts; no known toxicity in fetus</td>
<td>Probably safe</td>
</tr>
</tbody>
</table>

* Use only for strong clinical indication in absence of suitable alternative.

5. See page 184, footnote 61 and page 186, footnote 74.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Toxicity in Pregnancy</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrethrins and piperonyl butoxide (RID, and others)</td>
<td>Poorly absorbed; no known toxicity in fetus</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Pyrimethamine (Daraprim)</td>
<td>Teratogenic in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Pyrimethamine-sulfadoxine (Fansidar)</td>
<td>Teratogenic in animals; increased risk of kernicterus in newborn</td>
<td>Caution*; especially at term</td>
</tr>
<tr>
<td>Quinacrine (Atabrine)</td>
<td>Safety not established</td>
<td>Caution*</td>
</tr>
<tr>
<td>Quinine</td>
<td>Large doses can cause abortion; auditory nerve hypoplasia, deafness in fetus; visual changes, limb anomalies, visceral defects also reported</td>
<td>Caution*</td>
</tr>
<tr>
<td>Suramin sodium (Germanin)</td>
<td>Teratogenic in mice</td>
<td>Caution*</td>
</tr>
<tr>
<td>Thiabendazole (Mintezol)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Tinidazole (Tindamax)</td>
<td>Increased fetal mortality in rats</td>
<td>Caution*</td>
</tr>
</tbody>
</table>

Antituberculosis

<table>
<thead>
<tr>
<th>Drug</th>
<th>Toxicity in Pregnancy</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capreomycin (Capastat)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Cycloserine (Seromycin, and others)</td>
<td>Unknown</td>
<td>Caution*</td>
</tr>
<tr>
<td>Ethambutol (Myambutol)</td>
<td>None known – teratogenic in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Ethionamide (Trecator-SC)</td>
<td>Teratogenic in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Isoniazid (Nydrazid, and others)</td>
<td>Embryocidal in some animals</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>Unknown</td>
<td>Caution*</td>
</tr>
<tr>
<td>Rifabutin (Mycobutin)</td>
<td>Unknown</td>
<td>Caution*</td>
</tr>
<tr>
<td>Rifampin (Rifadin, Rimactane)</td>
<td>Teratogenic in animals</td>
<td>Probably safe</td>
</tr>
<tr>
<td>Rifapentine (Priftin)</td>
<td>Teratogenic in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>Possible 8th-nerve toxicity in fetus</td>
<td>Contraindicated</td>
</tr>
</tbody>
</table>

Antiviral

<table>
<thead>
<tr>
<th>Drug</th>
<th>Toxicity in Pregnancy</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacavir (Ziagen)</td>
<td>Teratogenic in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Acyclovir (Zovirax, and others)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Amantadine (Symmetrel, and others)</td>
<td>Teratogenic and embryotoxic in rats</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Amprenavir (Agenerase)</td>
<td>Teratogenic in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Atazanavir (Reyataz)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Cidofovir (Vistide)</td>
<td>Embryotoxic in rats and rabbits</td>
<td>Caution*</td>
</tr>
<tr>
<td>Delavirdine (Rescriptor)</td>
<td>Teratogenic in rats</td>
<td>Caution*</td>
</tr>
<tr>
<td>Didanosine (ddI; Videx)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Efavirenz (Sustiva)</td>
<td>Neural tube defects</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Emtricitabine (Emtriva)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Famciclovir (Famvir)</td>
<td>Animal toxicity</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Foscarnet (Foscavir)</td>
<td>Animal toxicity</td>
<td>Caution*</td>
</tr>
<tr>
<td>Ganciclovir (Cytovene; Vitrasept)</td>
<td>Teratogenic and embryotoxic in animals</td>
<td>Caution*</td>
</tr>
</tbody>
</table>

* Use only for strong clinical indication in absence of suitable alternative.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Toxicity in Pregnancy</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indinavir (Crixivan)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Interferon alfa (Intron A, and others)</td>
<td>Large doses cause abortions in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Pegylated interferon (PEG-Intron, Pegasys)</td>
<td>As above</td>
<td>As above</td>
</tr>
<tr>
<td>Lamivudine (3TC; Epivir)</td>
<td>Unknown</td>
<td>Caution*</td>
</tr>
<tr>
<td>Lopinavir/ritonavir (Kaletra)</td>
<td>Animal toxicity</td>
<td>Caution*</td>
</tr>
<tr>
<td>Nelfinavir (Viracept)</td>
<td>No fetal toxicity in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Nevirapine (Viramune)</td>
<td>Decrease in fetal weight in rats</td>
<td>Caution*</td>
</tr>
<tr>
<td>Oseltamivir (Tamiflu)</td>
<td>Some minor skeletal abnormalities in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Ribavirin (Virazole, Rebetol)</td>
<td>Mutagenic, teratogenic, embryolethal in nearly all species, and possibly carcinogenic in animals</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Rimantadine (Flumadine)</td>
<td>Embryotoxic in rats</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Ritonavir (Norvir)</td>
<td>Animal toxicity</td>
<td>Caution*</td>
</tr>
<tr>
<td>Saquinavir (Invirase; Fortovase)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Stavudine (d4T; Zerit)</td>
<td>Animal toxicity with high doses</td>
<td>Caution*</td>
</tr>
<tr>
<td>Tenofovir (Viread)</td>
<td>None in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Tipranavir (Aptivus)</td>
<td>Fetal toxicity in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Valacyclovir (Valtrex)</td>
<td>None known</td>
<td>Caution*</td>
</tr>
<tr>
<td>Valganciclovir (Valcyte)</td>
<td>Teratogenic and embryotoxic in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Vidarabine (Vira-A)</td>
<td>Teratogenic in rats and rabbits</td>
<td>Caution*</td>
</tr>
<tr>
<td>Zalcitabine (ddC; Hivid)</td>
<td>Teratogenic and embryotoxic in mice</td>
<td>Caution*</td>
</tr>
<tr>
<td>Zanamivir (Relenza)</td>
<td>None in animals</td>
<td>Caution*</td>
</tr>
<tr>
<td>Zidovudine (AZT; Retrovir)</td>
<td>Mutagenic in vitro</td>
<td>Indicated to prevent HIV infection of fetus</td>
</tr>
</tbody>
</table>

* Use only for strong clinical indication in absence of suitable alternative.

6. Shown to be safe and effective for HIV-infected women at single 200 mg PO dose at start of labor.
Drug Trade Names

A

abacavir – Ziagen (GlaxoSmithKline)
abacavir-lamivudine-zidovudine – Trizivir (GlaxoSmithKline)
Abelcet (Elan) – amphotericin B lipid complex
Actisite (Proctor & Gamble) – tetracycline HCl
* acyclovir – Zovirax (GlaxoSmithKline)
adefovir – Hepsera (Gilead)
Aftate (Schering) – tolnaftate
Agenerase (GlaxoSmithKline) – amprenavir
Ala-Tet (Del-Ray) – tetracycline HCl
alatrofloxacin – Trovan IV (Pfizer)
albendazole – Albenza (GlaxoSmithKline)
Alferon N (Interferon Sciences) – interferon alfa-n3
* amantadine – Symmetrel (Du Pont), others
AmBisome (Fujisawa) – amphotericin B liposomal
amikacin – Amikin (Bristol-Myers Squibb)
Amikin (Bristol-Myers Squibb) – amikacin
* aminosalicylic acid – Paser (Jacobus)
* amoxicillin – Amoxil (GlaxoSmithKline), others
amoxicillin/clavulanic acid – Augmentin (GlaxoSmithKline)
Amoxil (GlaxoSmithKline) – amoxicillin
Amphotec (Sequus) – amphotericin B cholesteryl sulfate complex
* amphotericin B – Fungizone (Bristol-Myers Squibb), others
amphotericin B cholesteryl sulfate complex – Amphotec (Sequus)
amphotericin B lipid complex – Abelcet (Elan)
amphotericin B liposomal – AmBisome (Fujisawa)
* ampicillin – Principen (Bristol-Myers Squibb), others
ampicillin/sulbactam – Unasyn (Pfizer)
amprenavir – Agenerase (GlaxoSmithKline)
Ancef (GlaxoSmithKline) – cefazolin
Ancobon (Roche) – flucytosine

* Also available generically.
§ Not commercially available in the US.
Antiminth (Pfizer) – pyrantel pamoate
Aptivus (Boehringer Ingelheim) – tipranavir
Aralen (Sanofi) – chloroquine
§ *Arsobal* (Aventis, France) – melarsoprol
artemether – *Artenam* (Arenco, Belgium)
atazanavir – *Reyataz* (Bristol-Myers Squib b)
atovaquone – *Mepron* (GlaxoSmithKline)
atovaquone/proguanil – *Malarone* (GlaxoSmithKline)
Augmentin (GlaxoSmithKline) – amoxicillin/clavulanic acid
Avelox (Bayer) – moxifloxacin
Azactam (Bristol-Myers Squibb) – aztreonam
AZT – see zidovudine
azithromycin – *Zithromax* (Pfizer), *Zmax* (Pfizer)
aztreonam – *Azactam* (Bristol-Myers Squibb)

B

Bactrim (Roche) – trimethoprim-sulfamethoxazole
Baraclude (Bristol-Myers Squibb) – entecavir
Beepen-VK (GlaxoSmithKline) – penicillin V
§ benznidazole – *Rochagan* (Roche, Brazil)
Biaxin (Abbott) – clarithromycin
Bicillin LA (Wyeth-Ayerst) – penicillin G benzathine
Biltricide (Bayer) – praziquantel
Bio-cef (Intl Ethic Lab) – cephalixin
§ bithionol – *Bitin* (Tanabe, Japan)
§ *Bitin* – bithionol (Tanabe, Japan)
Brodspec (Truxton) – tetracycline HCl
butoconazole – *Femstat* (Bayer), *Gynazole* (Ther-Rx)

* Also available generically.
§ Not commercially available in the US.
Drugs Trade Names

C

Candidas (Merck) – caspofungin
Capastat (Dura) – capreomycin
carbenicillin – *Geocillin* (Pfizer)
caspofungin – *Candidas* (Merck)
Ceclor (Lilly) – cefaclor
cefaclor – *Ceclor* (Lilly)
Cedax (Biovail) – ceftibuten
* cefadroxil – *Duricef* (Bristol-Myers Squibb), others
Cefadyl (Bristol-Myers Squibb) – cephapirin
cefamandole – *Mandol* (Lilly)
* cefazolin – *Ancef* (GlaxoSmithKline), others
cefdinir – *Omnicef* (Abbott)
cefditoren – *Spectracef* (TAP)
cefepime – *Maxipime* (Elan)
cefíxime – *Suprax* (Lederle)
Cefizox (Fujisawa) – ceftizoxime
Cefobid (Pfizer) – cefoperazone
cefonicid – *Monocid* (GlaxoSmithKline)
cefoperazone – *Cefobid* (Pfizer)
Cefotan (AstraZeneca) – cefotetan
cefotaxime – *Claforan* (Aventis)
cefotetan – *Cefotan* (Zeneca)
cefoxitin – *Mefoxin* (Merck)
cefpodoxime – *Vantin* (Pharmacia)
cefprozil – *Cefzil* (Bristol-Myers Squibb)
ceftazidime – *Fortaz, Ceptaz, Tazicef* (GlaxoSmithKline), *Tazidime* (Lilly)
ceftibuten – *Cedax* (Biovail)

* Also available generically.
§ Not commercially available in the US.
Ceftin (GlaxoSmithKline) – cefuroxime axetil
cefopizoxime – **Cefizox** (Fujisawa)
* ceftriaxone – **Rocephin** (Roche), others
cefuroxime – **Kefurox** (Lilly), **Zinacef** (GlaxoSmithKline)
cefuroxime axetil – **Ceftin** (GlaxoSmithKline)
Cefzil (Bristol-Myers Squibb) – cefprozil
* cephalaxin – **Keflex** (Dista), others
cephapirin – **Cefadyl** (Bristol-Myers Squibb)
* cephradine – **Velosef** (Bristol-Myers Squibb), others
Ceptaz (GlaxoSmithKline) – ceftazidime
* chloramphenicol – **Chloromycetin** (Parke-Davis), others
Chloromycetin (Parke-Davis) – chloramphenicol
* chloroquine – **Aralen** (Sanofi), others
cidofovir – **Vistide** (Gilead)
Cinobac (Oclassen) – cinoxacin
* cinoxacin – **Cinobac** (Oclassen), others
Cipro (Bayer) – ciprofloxacin
* ciprofloxacin – **Cipro** (Bayer), others
Claforan (Aventis) – cefotaxime
clarithromycin – **Biaxin** (Abbott)
Cleocin (Pharmacia) – clindamycin
* clindamycin – **Cleocin** (Pharmacia), others
cloflazimine – **Lamprene** (Novartis)
clotrimazole – **Myclex** (Bayer)
* cloxacillin – generic
Cofatrim Fort (Ampharco) – trimethoprim-sulfamethoxazole
colistimethate – **Coly-Mycin** (Parke-Davis)
Coly-Mycin (Parke-Davis) – colistimethate
Combivir (GlaxoSmithKline) – lamivudine-zidovudine
Cotrim (Teva) – trimethoprim-sulfamethoxazole
crotamiton – **Eurax** (Westwood-Squibb)

* Also available generically.
§ Not commercially available in the US.
Drugs Trade Names

Crixivan (Merck) – indinavir
Cubicin (Cubist) – daptomycin
* cycloserine – *Seromycin* (Dura), others
Cytovene (Roche) – ganciclovir

D
ddC – see didanosine
ddI – see zalcitabine
* dapsone – generic (Jacobus)
daptomycin – *Cubicin* (Cubist)
* Daraprim* (GlaxoSmithKline) – pyrimethamine
Declomycin (Lederle) – demeclocycline
delavirdine – *Rescriptor* (Pharmacia)
demeclocycline – *Declomycin* (Lederle)
* Denavir* (Novartis) – penciclovir
* dicloxacillin – *Dycill* (GlaxoSmithKline), others
didanosine – *Videx* (Bristol-Myers Squibb)
diethylcarbamazine – *Hetrazan* (Lederle)
* Diflucan* (Pfizer) – fluconazole
§ diloxanide furoate – *Furamide* (Knoll, U.K.)
dirithromycin – *Dynabac* (Muro)
* Doryx* (Warner Chilcott) – doxycycline
* doxycycline – *Vibramycin* (Pfizer), others
Duricef (Bristol-Myers Squibb) – cefadroxil
Dycill (GlaxoSmithKline) – dicloxacillin
Dynabac (Muro) – dirithromycin
Dynapen (Bristol-Myers Squibb) – dicloxacillin

* Also available generically.
§ Not commercially available in the US.
E.S. (Abbott) – erythromycin
efavirenz – Sustiva (DuPont)
§ Egaten (Novartis) – triclabendazole
§ efornithine – Ornidyl (Aventis)
Elimite (Allergan) – permethrin
emitricitabine – Emtriva (Gilead)
Entret-500 (EconoMed) – tetracycline HCl
E-Mycin (Knoll) – erythromycin
enfuvirtide – Fuzeon (Trimeris-Roche)
enoxacin – Penetrex (Aventis)
entecavir – Baraclude (Bristol-Myers Squibb)
Epivir (GlaxoSmithKline) – lamivudine
Epzicomin (GlaxoSmithKline) – abacavir-lamivudine
ertapenem – Invanz (Merck)
Ery-Tab (Abbott) – erythromycin
ERYC (Parke-Davis) – erythromycin
Erythrocin (Abbott) – erythromycin
* erythromycin – Erythrocin (Abbott), others
* erythromycin-sulfisoxazole – Pediazole (Ross/Abbott), others
Eryzole (Alra) – erythromycinsulfisoxazole
ethambutol – Myambutol (Lederle)
etionamide – Trecator-SC (Wyeth-Ayerst)
Eurax (Westwood-Squibb) – crotamiton
Exelderm (Westwood-Squibb) – sulconazole

Factive (Oscient) – gemifloxacin
famciclovir – Famvir (GlaxoSmithKline)

* Also available generically.
§ Not commercially available in the US.
Drugs Trade Names

Famvir (GlaxoSmithKline) – famciclovir
Fansidar (Roche) – pyrimethamine-sulfadoxine
Femstat (Bayer) – butoconazole
Flagyl (Searle) – metronidazole
Floxin (Ortho-McNeil) – ofloxacin
fluconazole – Diflucan (Pfizer)
flucytosine – Ancobon (Roche)
Flumadine (Forest) – rimantadine
fomivirsen – Vitravene (Novartis)
Fortaz (GlaxoSmithKline) – ceftazidime
Fortovase (Roche) – saquinavir
fosamprenavir – Lexiva (GlaxoSmithKline)
foscarnet – Foscavir (AstraZeneca)
Foscavir (AstraZeneca) – foscarnet
fosfomycin – Monurol (Forest)
Fulvicin P/G (Schering) – griseofulvin
Fulvicin U/F (Schering) – griseofulvin
Fungizone (Bristol-Myers Squibb) – amphotericin B
Furacin (Roberts) – nitrofurazone
Furadantin (Dura) – nitrofurantoin
§ *Furamide* (Knoll, U.K.) – diloxanide furoate
furazolidone – Furoxone (Roberts)
Furoxone (Roberts) – furazolidone

G
ganciclovir – *Cytovene* (Roche); *Vitrasert* (Bauch & Lomb)
Gantrisin (Roche) – sulfisoxazole
Garamycin (Schering) – gentamicin
gatifloxacin – *Tequin* (Bristol-Myers Squibb)

* Also available generically.
§ Not commercially available in the US.
gemifloxacin – *Factive* (Oscient)
* gentamicin – *Garamycin* (Schering), others
*Geocillin (Pfizer) – carbenicillin
§ *Glucantine* (Aventis, France) – meglumine antimoniate
*G-Mycin (Bolan) – gentamicin
*Grisactin (Wyeth-Ayerst) – griseofulvin
* griseofulvin – *Fulvicin U/F* (Schering), others
*Gris-PEG (Allergan) – griseofulvin
*Gynazole (Ther-Rx) – butoconazole

H

§ *Halfan* (GlaxoSmithKline) – halofantrine
§ halofantrine – *Halfan* (GlaxoSmithKline)
Hetrazan (Lederle) – diethylcarbamazine
Hiprex (Aventis) – methenamine hippurate
Hivid (Roche) – zalcitabine
Humatin (Parke-Davis) – paromomycin
hydroxychloroquine – *Plaquenil* (Sanofi-Synthelabo)

I

Ilosone (Dista) – erythromycin estolate
imipenem-cilastatin – *Primaxin* (Merck)
imiquimod – *Aldara* (3M)
indinavir – *Crixivan* (Merck)
Invanz (Merck) – ertapenem
Infergen (Amgen) – interferon alfacon-1
interferon alfa-2a – *Roferon-A* (Roche)
interferon alfa-2a, pegylated – *Pegasys* (Roche)

* Also available generically.
§ Not commercially available in the US.
Drugs Trade Names

interferon alfa-2b – *Intron A (Schering)*
interferon alfa-2b, pegylated – *PEG-Intron (Schering)*
interferon alfa-n3 – *Alferon N (Interferon Sciences)*
interferon alfacon-1 – *Infergen (Amgen)*
Intron A (Schering) – interferon alfa-2b
Invirase (Roche) – saquinavir
* iodoquinol – *Yodoxin (Glenwood), others*
* isoniazid – *Nydrazid (Bristol-Myers Squibb)*
itraconazole – *Sporanox (Janssen)*
ivermectin – *Stromectol (Merck)*

K

Kaletra (Abbott) – lopinavir/ritonavir
* kanamycin – *Kantrex (Bristol-Myers Squibb), others*
Kantrex (Bristol-Myers Squibb) – kanamycin
Keflex (Dista) – cephalexin
Keftab (Dista) – cephalexin
Kefurox (Lilly) – cefuroxime
Kefzol (Lilly) – cefazolin
Ketek (Aventis) – telithromycin
ketoconazole – *Nizoral (Janssen)*

L

lamivudine – Epivir, Epivir HBV (GlaxoSmithKline)
lamivudine-zidovudine – Combivir (GlaxoSmithKline)
lamivudine-zidovudine-abacavir – Trizivir (GlaxoSmithKline)
§ *Lampit (Bayer, Germany)* – nifurtimox
Lamprene (Novartis) – clofazimine

* Also available generically.
§ Not commercially available in the US.
Lariam (Roche) – mefloquine

Ledercillin VK (Lederle) – penicillin V

levofloxacinc – **Levaquin** (Ortho-McNeil)

Lincozin (Pharmacia) – lincomycin

*lincomycin – **Lincocin** (Pharmacia)

Lincorex (Hyrex) – lincomycin

linezolid – **Zyvox** (Pharmacia)

lomefloxacin – **Maxaquin** (Searle)

lopinavir/ritonavir – **Kaletra** (Abbott)

Lorabid (Lilly) – loracarbef

loracarbef – **Lorabid** (Lilly)

Lyphocin (Lypho-Med) – vancomycin

M

Macrobid (Proctor & Gamble) – nitrofurantoin

Macrodantin (Proctor & Gamble) – nitrofurantoin

Malarone (GlaxoSmithKline) – atovaquone/proguanil

malathion – **Ovide** (Medicis)

Mandelamine (Warner Chilcott) – methenamine mandelate

Mandol (Lilly) – cefamandole

Marcillin (Marnel) – ampicillin

Maxaquin (Searle) – lomefloxacin

Maxipime (Elan) – cefepime

mebendazole – **Vermox** (Janssen)

mefloquine – **Lariam** (Roche)

Mefoxin (Merck) – cefoxitin

§ meglumine antimoniate – **Glucantime** (Aventis, France)

§ melarsoprol – **Arsobal** (Aventis, France)

meropenem – **Merrem** (AstraZeneca)

* Also available generically.

§ Not commercially available in the US.
Drugs Trade Names

* Merrem (AstraZeneca) – meropenem
methenamine hippurate – Hiprex (Aventis), Urex (3M)
* methenamine mandelate – Mandelamine (Warner Chilcott), others
* metronidazole – Flagyl (Searle), others
micafungin – Mycamine (Astellas)
* miconazole – Monistat (Ortho-McNeil), others
§ miltefosine – Imparido (Zentaris, Geranay)
Minocin (Wyeth) – minocycline
* minocycline – Minocin (Wyeth), others
Mintezol (Merck) – thiabendazole
Monistat (Ortho-McNeil) – miconazole
Monodox (Oclassen) – doxycycline
Monurol (Forest) – fosfomycin
moxifloxacin – Avelox (Bayer)
Myambutol (Lederle) – ethambutol
Mycamine (Astellas) – micafungin
Mycelex (Bayer) – clotrimazole
Mycobutin (Pharmacia) – rifabutin
Mycostatin (Bristol-Myers Squibb) – nystatin
My-E (Seneca) – erythromycin

nafcillin – Unipen (Wyeth-Ayerst)
* nalidixic acid – NegGram (Sanofi), others
Nallpen (Baxter) – nafcillin
Natacyn (Alcon) – natamycin
natamycin – Natacyn (Alcon)
Nebcin (Lilly) – tobramycin
NebuPent (Fujisawa) – pentamidine

* Also available generically.
§ Not commercially available in the US.
NegGram (Sanofi) – nalidixic acid
nelfinavir – Viracept (Pfizer)
* neomycin – many manufacturers
Neutrexin (US Bioscience) – trimetrexate
nevirapine – Viramune (Boehringer Ingelheim)
§ niclosamide – Yomesan (Bayer, Germany)
§ nifurtimox – Lampit (Bayer, Germany)
Nilstat (Lederle) – nystatin
nitazoxanide – Alinia (Romark)
§ nitazoxanide – Cryptaz (Romark)
* nitrofurantoin – Macrodim (Proctor & Gamble), others
* nitrofurazone – Furacin (Roberts), others
Nix (GlaxoSmithKline) – permethrin
Nizoral (Janssen) – ketoconazole
norfloxacin – Noroxin (Merck)
Noroxin (Merck) – norfloxacin
Norvir (Abbott) – ritonavir
Nydrazid (Bristol-Myers Squibb) – isoniazid
* nystatin – Mycostatin (Bristol-Myers Squibb), others
Nystex (Savage) – nystatin

O

ofloxacin – Floxin (Ortho-McNeil)
Omnicef (Abbott) – cefdinir
Omnipen (Wyeth-Ayerst) – ampicillin
§ ornidazole – Tiberal (Hoffmann LaRoche, Switzerland)
§ Ornidyl (Aventis) – eflornithine
oseltamivir – Tamiflu (Roche/Gilead)
Ovide (Medicis) – malathion

* Also available generically.
§ Not commercially available in the US.
Drugs Trade Names

* oxacillin – generic
oxamniquine – Vansil (Pfizer)
oxytetracycline – Terramycin (Pfizer)

§ Paludrine (Ayerst, Canada, ICI, U.K.) – proguanil
Panmycin (Pharmacia) – tetracycline HCl
paromomycin – Humatin (Parke-Davis)
Paser (Jacobus) – aminosalicylic acid
Pediazole (Ross/Abbott) – erythromycin-sulfisoxazole
Pegasys (Roche) – pegylated interferon alfa 2a
PEG-Interon (Schering) – pegylated interferon alfa 2b
penciclovir – Denavir (Novartis)
Penetrex (Aventis) – enoxacin
* penicillin G – many manufacturers
penicillin G benzathine – Bicillin LA (Wyeth-Ayerst), Permapen (Pfizer)
* penicillin G procaine – many manufacturers
* penicillin V – many manufacturers
Pentam 300 (Fujisawa) – pentamidine
* pentamidine isethionate – Pentam 300 (Fujisawa), NebuPent (Fujisawa), others
§ Pentostam (GlaxoSmithKline, U.K.) – sodium stibogluconate
Pen-V (Zenith Goldline) – penicillin V
Permapen (Pfizer) – penicillin G benzathine
* permethrin – Elimite (Allergan), Nix (GlaxoSmithKline)
piperacillin – Pipracil (Wyeth)
piperacillin/tazobactam – Zosyn (Wyeth)
Pipracil (Wyeth) – piperacillin
Plaquenil (Sanofi-Synthelabo) – hydroxychloroquine

* Also available generically.
§ Not commercially available in the US.
Drugs Trade Names

* polymyxin B – generic
praziquantel – *Biltricide* (Bayer)
Priftin (Aventis) – rifapentine
primaquine phosphate (Sanofi) – generic
Primaxin (Merck) – imipenemcilastatin sodium
Principen (Bristol-Myers Squibb) – ampicillin
§ proguanil – *Paludrine* (Ayerst, Canada; ICI, U.K.)
proguanil/atovaquone – *Malarone* (GlaxoSmithKline)
Proloprim (GlaxoSmithKline) – trimethoprim
Pronto (Del) – pyrethrins with piperonyl butoxide
Protostat (Ortho-McNeil) – metronidazole
* pyrantel pamoate – *Antiminth* (Pfizer), others
* pyrazinamide – generic
* pyrethrins with piperonyl butoxide- *RID* (Pfizer), others
pyrimethamine – *Daraprim* (GlaxoSmithKline)
pyrimethamine-sulfadoxine – *Fansidar* (Roche)

Q

* quinidine gluconate – many manufacturers
§ quinine dihydrochloride
* quinine sulfate – many manufacturers
quinupristin-dalfopristin – *Synercid* (Aventis)

R

Rebetol (Schering) – ribavirin
Rebetron (Schering) – ribavirin-interferon alfa-2b
Relenza (GlaxoSmithKline) – zanamivir

* Also available generically.
§ Not commercially available in the US.
Drugs Trade Names

Rescriptor (Pharmacia) – delavirdine
Retrovir (GlaxoSmithKline) – zidovudine
ribavirin – *Virazole* (ICN); *Rebetol* (Schering)
ribavirin-interferon alfa-2b – *Rebetron* (Schering)
RID (Pfizer) – pyrethrins with piperonyl butoxide
rifabutin – *Mycobutin* (Pharmacia)
Rifadin (Aventis) – rifampin
Rifamate (Aventis) – rifampin-isoniazid
rifamycin – *Xifaxan* (Salix)
rifampin – *Rimactane* (Novartis), *Rifadin* (Aventis)
rifampin-isoniazid – *Rifamate* (Aventis)
rifapentine – *Priftin* (Aventis)
Rifater (Aventis) – rifampin, isoniazid and pyrazinamide
Rimactane (Novartis) – rifampin
rinamandine – *Flumadine* (Forest)
ritonavir – *Norvir* (Abbott)
ritonavir/lopinavir – *Kaletra* (Abbott)
Rocephin (Roche) – ceftriaxone
§ *Rochagan* (Roche, Brazil) – benznidazole
Roferon-A (Roche) – interferon alfa-2a
§ *Rovamycine* (Aventis) – spiramycin

S

saquinavir – *Fortovase; Invirase* (Roche)
Septra (GlaxoSmithKline) – trimethoprim-sulfamethoxazole
Seromycin (Lilly) – cycloserine
Sertaconazole – *Ertaczo* (Ortho Neutrogena)
§ sodium stibogluconate – *Pentostam* (GlaxoSmithKline, U.K.)
Soxa (Vita Elixir) – sulfisoxazole

* Also available generically.
§ Not commercially available in the US.
spectinomycin – *Trobicin* (Pharmacia)
Spectracef (TAP) – cefditoren
§ spiramycin – *Rovamycine* (Aventis)
Sporanox (Janssen) – itraconazole
stavudine – *Zerit* (Bristol-Myers Squibb)
* streptomycin – generic
Stromectol (Merck) – ivermectin
sulconazole – *Exelderm* (Westwood-Squibb)
Sulfatrim – trimethoprim-sulfamethoxazole
* sulfisoxazole – *Gantrisin* (Roche), others
Sumycin (Bristol-Myers Squibb) – tetracycline HCl
Suprax (Lederle) – cefixime
§ suramin – (Bayer, Germany)
Suspen (Circle) – penicillin V
Sustiva (DuPont) – efavirenz
Symmetrel (Du Pont) – amantadine
Synercid (Aventis) – quinupristin-dalfopristin

T

Tamiflu (Roche/Gilead) – oseltamivir
TAO (Pfizer) – troleandomycin
Tazicef (GlaxoSmithKline) – ceftazidime
Tazidine (Lilly) – ceftazidime
telithromycin – *Ketek* (Aventis)
tenofovir – *Viread* (Gilead)
Tequin (Bristol-Myers Squibb) – gatifloxacin
Terramycin (Pfizer) – oxytetracycline
Tetracap (Circle) – tetracycline HCl

* Also available generically.
§ Not commercially available in the US.
Drugs Trade Names

Tetracon (Consolidated Midland) – tetracycline HCl

* tetracycline HCl – *Sumycin* (Bristol-Myers Squibb), others

thiabendazole – *Mintezol* (Merck)

§ *Tiberal* (Hoffmann LaRoche, Switzerland) – ornidazole

Ticar (GlaxoSmithKline) – ticarcillin

ticarcillin – *Ticar* (GlaxoSmithKline)

ticarcillin/clavulanic acid – *Timentin* (GlaxoSmithKline)

tigecycline – *Tygacil* (Wyeth)

Timentin (GlaxoSmithKline) – ticarcillin/clavulanic acid

Tindamax (Presutti) – tinidazole

tinidazole – *Tindamax* (Presutti)

tioconazole – *Vagistat* (Bristol-Myers Squibb)

tipranavir – *Aptivus* (Boehringer Ingelheim)

* tobramycin – *Nebcin* (Lilly), others

* tolnaftate – *Aftate* (Schering), others

Trecator-SC (Wyeth-Ayerst) – ethionamide

§ *triclabendazole* – *Egaten* (Novartis)

trifluridine – *Viroptic* (GlaxoSmithKline)

* trimethoprim – *Proloprim* (GlaxoSmithKline), others

* trimethoprim-sulfamethoxazole – *Bactrim* (Roche), *Septra*

(ThermoFisher), others

trimetrexate – *Neutrexin* (US Bioscience)

Trimox (Bristol-Myers Squibb) – amoxicillin

Trimpex (Roche) – trimethoprim

* trisulfapyrimidines – *Triple Sulfa* (Allscripts), others

Trizivir (GlaxoSmithKline) – abacavir, lamivudine, zidovudine

Trobicin (Pharmacia) – spectinomycin

troleandomycin – *TAO* (Pfizer)

trovafloxacin – *Trovan* (Pfizer)

* Also available generically.

§ Not commercially available in the US.
Trovan (Pfizer) - trovafloxacin
Truvada (Gilead) – emitricitabine-tenofovir
Truxazole (Truxton) – sulfisoxazole
Truxcillin VK (Truxton) – penicillin V
Tygacil (Wyeth) – tigecycline

U
Unasyn (Pfizer) – ampicillin/sulbactam
Unipen (Wyeth-Ayerst) – nafcillin
Urex (Virco) – methenamine hippurate

V
Vagistat (Bristol-Myers Squibb) – tioconazole
valacyclovir – Valtrex (GlaxoSmithKline)
valganciclovir – Valcyte (Roche)
Valcyte (Roche) – valganciclovir
Valtrex (GlaxoSmithKline) – valacyclovir
Vancocin (Lilly) – vancomycin
Vancoled (Lederle) – vancomycin
* vancomycin – Vancocin (Lilly), others
Vansil (Pfizer) – oxamniquine
Vantin (Pharmacia) – cefpodoxime
V-cillin K (Lilly) – penicillin
Veetids (Bristol-Myers Squibb) – penicillin V
Velosef (Bristol-Myers Squibb) – cephradine
Vermox (Janssen) – mebendazole
Vfend (Pfizer) – voriconazole
Vibramycin (Pfizer) – doxycycline

* Also available generically.
§ Not commercially available in the US.
Drugs Trade Names

Vibra-Tabs (Pfizer) – doxycycline
vidarabine – *Vira-A* (Parke-Davis)
Videx (Bristol-Myers Squibb) – didanosine
Vira-A (Parke-Davis) – vidarabine
Viracept (Pfizer) – nelfinavir
Viramune (Boehringer Ingelheim) – nevirapine
Virazole (ICN) – ribavirin
Viread (Gilead) – tenofovir
Viroptic (GlaxoSmithKline) – trifluridine
Vistide (Gilead) – cidofovir
Vitracent (Bausch & Lomb) – ganciclovir
Vitravene (Novartis) – fomivirsen
voriconazole – *Vfend* (Pfizer)

W

Wesmycin (Wesley) – tetracycline HCl
Wycillin (Wyeth-Ayerst) – penicillin G
Wymox (Wyeth-Ayerst) – amoxicillin

X

Xifaxan (Salix) – Rifamixin

Y

Yodoxin (Glenwood) – iodoquinol
§ *Yomesan* (Bayer, Germany) – niclosamide

* Also available generically.
§ Not commercially available in the US.
Drug Trade Names

Z

zalcitabine – Hivid (Roche)
zanamivir – Relenza (GlaxoSmithKline)
Zerit (Bristol-Myers Squibb) – stavudine
Ziagen (GlaxoSmithKline) – abacavir
zidovudine – Retrovir (GlaxoSmithKline)
zidovudine-lamivudine – Combivir (GlaxoSmithKline)
zidovudine-lamivudine-abacavir – Trizivir (GlaxoSmithKline)
Zinacef (GlaxoSmithKline) – cefuroxime
Zithromax (Pfizer) – azithromycin
Zmax (Pfizer) – azithromycin
Zosyn (Wyeth) – piperacillin/tazobactam
Zovirax (GlaxoSmithKline) – acyclovir
Zyvox (Pharmacia) – linezolid

* Also available generically.
§ Not commercially available in the US.
INDEX

Note: Page numbers in bold type indicate major references

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacavir</td>
<td>139, 156</td>
</tr>
<tr>
<td>adverse effects</td>
<td>139, 238</td>
</tr>
<tr>
<td>dosage</td>
<td>141, 256</td>
</tr>
<tr>
<td>in pregnancy</td>
<td>282</td>
</tr>
<tr>
<td>indications</td>
<td>139</td>
</tr>
<tr>
<td>Abacavir/lamivudine</td>
<td>156</td>
</tr>
<tr>
<td>dosage</td>
<td>256</td>
</tr>
<tr>
<td>ABC, see Abacavir</td>
<td></td>
</tr>
<tr>
<td>ABCD, 121</td>
<td></td>
</tr>
<tr>
<td>ABECB, 75</td>
<td></td>
</tr>
<tr>
<td>Abelcet</td>
<td>121, 136, 183</td>
</tr>
<tr>
<td>adverse effects</td>
<td>121</td>
</tr>
<tr>
<td>dosage</td>
<td>119-122</td>
</tr>
<tr>
<td>ABLC, 121</td>
<td></td>
</tr>
<tr>
<td>Abortion</td>
<td>100, 105</td>
</tr>
<tr>
<td>Abreva</td>
<td></td>
</tr>
<tr>
<td>dosage</td>
<td>159</td>
</tr>
<tr>
<td>indications</td>
<td>161</td>
</tr>
<tr>
<td>Acanthamoeba</td>
<td>179</td>
</tr>
<tr>
<td>Acanthamoeba keratitis</td>
<td>179</td>
</tr>
<tr>
<td>Acetazolamide</td>
<td></td>
</tr>
<tr>
<td>dosage</td>
<td>225</td>
</tr>
<tr>
<td>indications</td>
<td>225</td>
</tr>
<tr>
<td>Acid fast bacilli</td>
<td>59</td>
</tr>
<tr>
<td>Acinetobacter</td>
<td>58, 66, 69</td>
</tr>
<tr>
<td>Aciphex</td>
<td>59</td>
</tr>
<tr>
<td>ActHIB</td>
<td>216</td>
</tr>
<tr>
<td>Actinomyces israelii</td>
<td>60</td>
</tr>
<tr>
<td>Acute mountain sickness</td>
<td>224</td>
</tr>
<tr>
<td>Acyclovir</td>
<td>157</td>
</tr>
<tr>
<td>adverse effects</td>
<td>157, 238</td>
</tr>
<tr>
<td>cost</td>
<td>206</td>
</tr>
<tr>
<td>dosage</td>
<td>159, 160, 204</td>
</tr>
<tr>
<td>in pregnancy</td>
<td>158, 208, 282</td>
</tr>
<tr>
<td>indications</td>
<td>157, 207</td>
</tr>
<tr>
<td>Adalat</td>
<td>135</td>
</tr>
<tr>
<td>Adalimumab</td>
<td>85</td>
</tr>
<tr>
<td>Adefovir dipivoxil</td>
<td>174, 177</td>
</tr>
<tr>
<td>adverse effects</td>
<td>174, 238</td>
</tr>
<tr>
<td>dosage</td>
<td>173, 178, 256</td>
</tr>
<tr>
<td>Advice for travelers</td>
<td>209</td>
</tr>
<tr>
<td>AECB, 79</td>
<td></td>
</tr>
<tr>
<td>Aeromonas</td>
<td>58, 214, 232</td>
</tr>
<tr>
<td>Agenerase</td>
<td>94, 125, 148</td>
</tr>
<tr>
<td>adverse effects</td>
<td>149, 239</td>
</tr>
<tr>
<td>dosage</td>
<td>143</td>
</tr>
<tr>
<td>indications</td>
<td>148</td>
</tr>
<tr>
<td>AIDS</td>
<td>138</td>
</tr>
<tr>
<td>Albendazole</td>
<td></td>
</tr>
<tr>
<td>adverse effects</td>
<td>238</td>
</tr>
<tr>
<td>dosage</td>
<td>256</td>
</tr>
<tr>
<td>in pregnancy</td>
<td>282</td>
</tr>
<tr>
<td>indications</td>
<td>180, 181, 182, 183, 186, 188, 189</td>
</tr>
<tr>
<td>pregnancy</td>
<td>281</td>
</tr>
<tr>
<td>Albenza</td>
<td>190</td>
</tr>
<tr>
<td>Aldara</td>
<td>175</td>
</tr>
<tr>
<td>dosage</td>
<td>176, 202</td>
</tr>
<tr>
<td>in pregnancy</td>
<td>207</td>
</tr>
<tr>
<td>indications</td>
<td>207</td>
</tr>
<tr>
<td>Alferon N</td>
<td>170, 244</td>
</tr>
<tr>
<td>Alinia</td>
<td>190, 247</td>
</tr>
<tr>
<td>Allergy, penicillin</td>
<td>69, 101</td>
</tr>
<tr>
<td>Allopurinol</td>
<td>96</td>
</tr>
<tr>
<td>Altitude sickness</td>
<td>224</td>
</tr>
<tr>
<td>Amantadine</td>
<td>166</td>
</tr>
<tr>
<td>adverse effects</td>
<td>167, 238</td>
</tr>
<tr>
<td>dosage</td>
<td>67, 168, 256</td>
</tr>
<tr>
<td>in pregnancy</td>
<td>167, 282</td>
</tr>
<tr>
<td>indications</td>
<td>65, 166</td>
</tr>
<tr>
<td>Ambien</td>
<td>226</td>
</tr>
<tr>
<td>AmBisome</td>
<td>117, 121, 131, 136, 183, 239, 256</td>
</tr>
<tr>
<td>Amebiasis</td>
<td>179</td>
</tr>
<tr>
<td>Amoebic meningoencephalitis, primary</td>
<td>180</td>
</tr>
<tr>
<td>Amikacin</td>
<td>7</td>
</tr>
<tr>
<td>adverse effects</td>
<td>96, 238</td>
</tr>
<tr>
<td>dosage</td>
<td>92, 256</td>
</tr>
<tr>
<td>in pregnancy</td>
<td>278</td>
</tr>
<tr>
<td>indications</td>
<td>57-61, 65, 69, 91, 94</td>
</tr>
<tr>
<td>Amikin</td>
<td>7, 61, 91, 92, 94, 96, 238</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>7, 58, 118</td>
</tr>
<tr>
<td>indications</td>
<td>69, 74</td>
</tr>
<tr>
<td>Aminosalicyclic acid</td>
<td>8</td>
</tr>
<tr>
<td>adverse effect</td>
<td>96, 238</td>
</tr>
<tr>
<td>dosage</td>
<td>92, 256</td>
</tr>
<tr>
<td>indications</td>
<td>59, 91, 94</td>
</tr>
<tr>
<td>Aminosidine</td>
<td>247</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>23, 79</td>
</tr>
</tbody>
</table>
adverse effects, 247
cost, 63
dosage, 67, 110, 114, 195, 200, 256
in pregnancy, 195, 279
indications, 55-61, 65, 113, 195
Amoxicillin-clavulanic acid, 23, 79
adverse effects, 247
cost, 63
dosage, 67, 256
in pregnancy, 279
indications, 56, 58, 59, 61, 65, 114
Amoxil, 23, 61, 67, 79, 110, 113-5, 195, 200, 247
Amphotec, 121, 136, 183
Amphotericin B, 117, 128
adverse effects, 118, 239
dosage, 119-22, 256
in pregnancy, 130, 280
indications, 180, 183
Amphotericin B lipid formulations, 121
adverse effects, 121
dosage, 119-122, 136, 256
indications, 117, 183
Ampicillin, 23
adverse effects, 247
dosage, 110, 256
in pregnancy, 279
indications, 55-58, 61, 65
Ampicillin-sulbactam, 24
adverse effects, 247
dosage, 200, 256
in pregnancy, 279
indications, 55, 57-61, 65
Amprenavir, 94, 125, 148
adverse effects, 149, 239
dosage, 143, 256
in pregnancy, 282
indications, 148
Amputation, 101
AMC, 224
Anaplasma phagocytophilum, 60, 112
Ancef, 10, 61, 98, 110, 240
Ancobon, 119, 120, 129, 190, 243
Angiostrongylus costaricensis, 180
Anisakiasis, 180
Antacids, 140
Anthrax, 56
Antibacterials
choice of, 43
prophylaxis for surgery, 98
prophylaxis for dental, GI and GU procedures, 109
resistance, 53, 55
Anticoagulants, 125
Antifungal drugs, 117
Antihelminthic drugs, 179
Antimicrobial prophylaxis for surgery, 98
Antiminth, 190
Antimony, 183
Antiretroviral therapy, 138
Antiviral drugs, 157
Appendicitis, 100, 104
Aptivus, 251
APV, see Amprenavir
Aralen, 190, 213, 240
Artemether
adverse effects, 239
indications and dosage, 185
Artenam, 190, 239
Arterial puncture, 108
Artesunate
adverse effects, 239
indications and dosage, 185
Ascaris lumbricoides, 180
Aspergillosis, 117, 124, 126, 128, 133
drugs for, 119, 131
Aspergillus terreus, 117
Aspiration pneumonia, 46, 68
Aspirin, 118
Atazanavir, 94, 149
adverse effects, 149, 239
dosage, 143, 258
in pregnancy, 282
indications, 149
Athletes foot, 121
Atorvastatin, 83
Atovaquone
adverse effects, 239
dosage, 258
in pregnancy, 281
parasitic infection, 180, 184, 186,
187, 188, 210, 213
Atovaquone/proguanil
 adverse effects, 210
dosage, 213, 258
 in pregnancy, 281
malaria, 184, 186, 210
ATV, see Atazanavir
Augmentin, 23, 61, 63, 67, 79, 114, 247
Augumentin XR, 79
Autan Repel, 213, 235
Avelox, 16, 61, 62, 67, 70, 75, 79, 92, 243
Avian influenza, 218
Axit, 59
Azactam, 9, 61, 69, 100, 102, 239
Azathioprine, 163
Azithromycin, 19
 adverse effects, 71, 239
 bacterial infections, 55-61, 65, 66, 74, 75, 80, 215, 232
dosage, 67, 70, 110, 195, 200, 202, 215, 233, 258
 in pregnancy, 72, 278
Lyme, 114
parasitic, 180
STIs, 194, 197, 205, 208
Azole antifungals, 122, 123, 130, 131
AZT, see Zidovudine
Aztreonam, 9
 adverse effects, 239
dosage, 258
 in pregnancy, 278
indications, 57, 59, 61, 69, 100, 102

Babesia, 112, 180
Babesiosis, 180
Bacillary angiomatosis, 58
Bacillus anthracis, 56
Bacillus cereus subtilis, 56
Bacitracin, 9
 adverse effects, 239
 indications and dosage, 182
Bacterial infections
 choice of drugs, 43
Bacterial vaginosis, 58, 201, 208
 drugs for, 202
 in pregnancy, 201
Bacteroides spp., 58, 65, 98
Bactrim, 30, 61, 63, 190, 252
Balamuthia mandrillaria, 180
Balantidiasis, 180
Balantidium coli, 180
Balnei, 59
Baraclude, 175, 177
 adverse effects, 177, 242
dosage, 178
Bartonella henselae, 58
Bartonella quintana, 58
Baylisascarisis, 180
Baylisascaris procyonis, 180
Bayrepel, 213
Benadryl, 100, 118
Benznidazole
 adverse effects, 240
 indications and dosage, 189
Benzodiazepines, 126
Betapace, 83
Biaxin, 20, 61, 62, 67, 75, 80, 96, 110, 190, 241
Bichloroacetic acid, 202
Bilharziasis, 187
Biliary tract surgery, 100, 103
Biltricide, 190, 248
Bismuth subsalicylate, 59, 214, 232
Bithionol
 adverse effects, 240
 indications and dosage, 182
Bitin, 190
 adverse effects, 240
Blastocystis hominis, 180
Blastomyces dermatitidis, 124
Blastomycosis, 66, 117, 119, 124, 127
Bone infections, 44
Bonine, 226
Bordetella pertussis, 58
Borrelia burgdorferi, 60, 112
Borrelia recurrentis, 60
Brachiola vesicularum, 186
Brachyella catarrhalis, 56
Brolene, 179
Bronchitis, 75, 79
Brucella, 58
Brugia malayi, 181
Brugia timori, 181
Burkholderia cepacia, 58
Burkholderia mallei, 58
Burkholderia pseudomallei, 58
Burns, 43, 108
Butoconazole, 203
dosage, 119

Calymmatobacterium granulomatis, 58
Campylobacter, 214, 232
Campylobacter fetus, 57
Campylobacter jejuni, 57
Candidas, 128, 135
adverse effects, 128, 240
dosage, 119, 123
Candida albicans, 122, 133, 203
Candida glabrata, 122, 133, 203
Candida krusei, 122, 133
Candida lusitaniae, 117
Candidemia, 119, 131
Candidiasis, 117, 122, 124, 126, 128, 129, 133
drugs for, 119
prophylaxis, 130
vulvovaginal, 203
CAP, 47, 75, 79
Capastat, 9, 91, 92, 96, 240
Capillaria philippinensis, 180
Capillariais, 180
Capnocytophaga canimorsus, 58
Capreomycin, 9, 61
adverse effects, 96, 240
dosage, 92, 258
in pregnancy, 282
indications, 91, 94
Carbamazepine, 83, 125
Carbapenems, 9, 68, 69
Carbenicillin, 25
adverse effects, 247
dosage, 258
in pregnancy, 279
indications, 55, 61, 65
Cardiac catheterization, 108
Cardiac surgery, 102
Caspofungin, 128, 135
adverse effects, 128, 240
dosage, 119, 123, 258
in pregnancy, 280
Cat hookworms, 181
Cat scratch bacillus, 58
Ceclor, 12
adverse effects, 240
bacterial infection, 61, 67
cost, 62
Cedax, 13
adverse effects, 240
bacterial infection, 61
cost, 62
Cefaclor, 12
adverse effects, 240
bacterial infection, 58, 61
cost, 62
dosage, 258, 67
in pregnancy, 278
Cefadroxil, 12
adverse effects, 240
bacterial infection, 61
cost, 62
dosage, 258, 110
in pregnancy, 278
Cefadyl, 10
adverse effects, 240
Cefamandole, 11
adverse effects, 240
bacterial infection, 55, 61
dosage, 258
in pregnancy, 278
Cefazolin, 10
adverse effects, 240
bacterial infection, 55, 61, 65
surgical prophylaxis, 98-101
dosage, 110, 258
in pregnancy, 278
Cefdinir, 13
adverse effects, 240
bacterial infection, 55, 61
cost, 62
dosage, 67, 258
in pregnancy, 278
Cefditoren, 13
adverse effects, 240
bacterial infection, 55, 61
cost, 62
dosage, 67, 258
in pregnancy, 278
Cefepime, 11, 99
adverse effects, 240
bacterial infection, 55, 57, 59, 61
dosage, 70, 258
in pregnancy, 278
pneumonia, 65, 68, 69, 74
Cefixime, 12
adverse effects, 240
bacterial infection, 55, 58, 61
dosage, 196, 200, 258
STIs, 196, 208
in pregnancy, 278
Cefizox, 11, 61
adverse effects, 240
bacterial infection, 70
surgical prophylaxis, 99
Cefobid, 11, 61
adverse effects, 240
bacterial infection, 70
surgical prophylaxis, 99
Cefonicid, 11
adverse effects, 240
dosage, 164
in pregnancy, 278
Cefoperazone, 11, 55, 61
adverse effects, 240
bacterial infection, 55, 61
dosage, 164
in pregnancy, 278
surgical prophylaxis, 99
Cefotan, 11, 61, 198
adverse effects, 240
surgical prophylaxis, 98
dosage, 200
Cefotaxime, 11, 55-61, 99, 114
adverse effects, 240
dosage, 70, 114, 260
in pregnancy, 278
pneumonia, 65, 66, 68, 74
Cefotetan, 11, 61, 98
adverse effects, 70, 240
dosage, 164, 240
surgical prophylaxis, 100
in pregnancy, 278
pneumonia, 65
STIs, 198
Cefoxitin, 11
adverse effects, 240
bacterial infection, 55, 58-61
surgical prophylaxis, 99
dosage, 200, 202, 260
in pregnancy, 278
pneumonia, 65
STIs, 198
Cefpodoxime proxetil, 13
adverse effect, 240
dosage, 67, 196, 200, 260
bacterial infection, 55, 56, 58, 61
cost, 62
in pregnancy, 278
STIs, 196
Cefprozil, 13
adverse effects, 240
bacterial infection, 55, 61
cost, 62
dosage, 67, 260
in pregnancy, 278
Ceftazidime, 11
adverse effects, 240
bacterial infection, 55, 57-61
surgical prophylaxis, 99
dosage, 70, 260
in pregnancy, 278
indications, 65
Ceftibuten, 13
adverse effect, 240
bacterial infection, 55, 61
cost, 62
dosage, 260
in pregnancy, 278
Cefitin, 6, 12, 113
adverse effects, 240
cost, 62
bacterial infection, 67, 75, 79
dosage, 114
Ceftizoxime, 11, 55-58, 61
adverse effects, 240
bacterial infection, 55-58, 61
surgical prophylaxis, 99
dosage, 70, 260
in pregnancy, 278
pneumonia, 65
Ceftriaxone, 11, 61
adverse effects, 69, 70, 240
bacterial infection, 55-59
dosage, 70, 114, 196, 200, 202, 260
in pregnancy, 278
pneumonia, 65, 66, 68, 74
Lyme, 114, 115
STIs, 196, 205, 208
surgical prophylaxis, 99
Cefuroxime, 100, 101
adverse effects, 240
bacterial infection, 55, 56, 58, 61
dosage, 260
in pregnancy, 278
surgical prophylaxis, 100, 101
Cefuroxime axetil, 12, 113
adverse effects, 240
bacterial infection, 55, 58, 60, 61,75, 79
cost, 62
dosage, 260
in pregnancy, 278
Cefzil, 12, 61
adverse effects, 240
bacterial infection, 67
cost, 62
Cellcept, 135, 163
Cellulitis, 43
Cephalexin, 12, 61
adverse effects, 240
bacterial infections, 55
cost, 62
dosage, 110, 260
in pregnancy, 278
Cephalosporins, 10
adverse effects, 69, 240
bacterial infections, 55-57, 59, 65, 79
cost, 62
in pregnancy, 70, 278
pneumonia, 66, 74
surgical prophylaxis, 98
Cepapirin, 10
adverse effects, 240
in pregnancy, 278
Cephradine, 12, 61
adverse effects, 240
bacterial infections, 55
cost, 62
dosage, 260
in pregnancy, 278
indications, 55, 61
Ceptaz, 240
Cervicitis, 197
drugs for, 200
Cesarean section, 100, 105
Chagas' disease, 189
Chancroid, 58, 205
drugs for, 202
Chinese liver fluke, 182
Chlamydia pneumoniae, 60, 64, 74
Chlamydia psittaci, 60, 65
Chlamydia trachomatis, 60, 194, 208
drugs for, 195, 200
Chlamydophilia pneumoniae, 60
Chlamydophilia psittaci, 60
Chloramphenicol, 13
adverse effects, 240
dosage, 260
in pregnancy, 278
indications, 56-61
Chlorhexidine, 179, 180
Chloromycetin, 13, 61, 240
Chloroquine
adverse effects, 240
dosage, 213, 258
in pregnancy, 281
indications and dosage, 185, 186, 209
Chloroquine-resistant malaria, 210
Cholangiopancreatography, 104
Cholangitis, 50
Cholera, 59
canine, 216
Chronic bronchitis, 79
Cidofovir, 165
 adverse effects, 166, 240
dosage, 162, 260
 in pregnancy, 282
Cilastatin, 10
Cimetidine, 59, 130
Cinobac, 27, 241
Cinoxacin, 27
 adverse effects, 241
dosage, 262
 in pregnancy, 278
Cipro, 16, 61, 62, 70, 92, 99-101, 196, 200, 202, 208, 214, 233, 243
Ciprofloxacin, 16, 140
 cost, 62
dosage, 70, 92, 196, 200, 202, 214, 233, 262
 in pregnancy, 279
 indications, 55-59, 61, 69, 75, 99-101, 196, 208
 parasitic infections, 181, 183
Cisapride, 83, 125
Claforan, 11, 61, 70, 99, 114, 240
Clarithromycin, 20
 adverse effects, 71, 241
bacterial infections, 55, 56, 58-60, 75, 80
cost, 62
dosage, 67, 110, 262
 in pregnancy, 72, 278
 interactions, 96
parasitic infections, 180
pneumonia, 65, 66, 74
Clarithin, 125
Clavulanic acid, 23, 29
Cleocin, 13, 61, 62, 68, 110, 190, 198-202, 241
Clindamycin, 13
 adverse effects, 241
bacterial infections, 55, 56, 58-61
cost, 62
dosage, 110, 200, 202, 262
 in pregnancy, 201, 278
 parasitic infections, 180, 184, 187, 188
 pneumonia, 65, 68, 69
 STIs, 198, 201
 surgical prophylaxis, 99-101
Clofazimine, 14
 adverse effects, 241
 bacterial infections, 59, 61
Clonorchis sinensis, 182
Clostridium difficile, 56
Clostridium perfringens, 56
Clostridium tetani, 56
Clotrimazole, 203
dosage, 119, 121
Cloxacillin, 24
 adverse effects, 247
 bacterial infections, 55, 61, 65
cost, 63
 in pregnancy, 279
CMV, 163
drugs for, 162
Coccidioides immitis, 124
Coccidioidomycosis, 66, 117, 127
drugs for, 120
Colistimethate, 27
 adverse effects, 248
 indications, 69
Colistin sulfate, 27
dosage, 262
 indications, 69
Colloidal dispersion amphotericin, 121
dosage, 122
Colorectal surgery, 100, 104
Coly-Mycin, 26, 69
 adverse effects, 248
Combivir, 144
dosage, 141
HIV, 153
Community acquired pneumonia, 64, 66, 74, 75
Condylox, 202, 207
Congenital syphilis, 205
drugs for, 202
Congo-Crimean hemorrhagic fever, 176
Contraceptives, 11, 95, 125
Copegus, 172
adverse effects, 249
dosage, 173
Corticostereoids, 12, 46, 96
Corynebacterium diphtheriae, 57
Corynebacterium JK group, 57
Cosmetic surgery, 108
Cost
antimicrobials, 62
IV drugs for pneumonia, 70
oral drugs for pneumonia, 67
treatment for STIs, 195
Coumadin, 12, 96, 123
Coxiella burnetii, 60
Creeping eruption, 180
Crixivan, 125, 150
adverse effects, 150, 244
dosage, 143
HIV, 150
Crotamiton
adverse effects, 241
in pregnancy, 281
parasitic, 187
Cryptococcosis, 117
drugs for, 120
Cryptococcus neoformans, 124
Cryptosporidium, 180
Cubicin, 14, 61, 241
Cutaneous larva migrans, 180
Cutter advanced, 235
Cycloserine, 13
adverse effects, 96, 241
bacterial infections, 61
dosage, 92, 262
in pregnancy, 282
TB, 91, 94
Cyclospora, 181
Cyclosporine, 118, 135
Cysticercus cellulosae, 188
Cystitis, 469
Cytomegalovirus, 163
drugs for, 162
Cytovene, 163, 243
D4T, see Stavudine
Dalfopristin, 27
Dapsone, 140, 61
adverse effects, 241
dosage, 262
in pregnancy, 278
indications, 187, 188
Daptomycin, 14, 55, 56, 61
adverse effects, 241
dosage, 262
in pregnancy, 278
Daraprim, 190
adverse effects, 248
ddC, see Zalcitabine
ddi, see Didanosine
Decadron, 46
Declomycin, 29, 251
Decubitus ulcers, 43
Deep vein thrombosis, 225
DEET, 113, 212, 235
Delavirdine, 96
adverse effects, 241
dosage, 143, 262
HIV, 146
in pregnancy, 282
Demeclocycline, 29
adverse effects, 251
in pregnancy, 280
Demerol, 118
Denavir, 159, 161
Dengue, 223
Dental procedures, 109
Dermatophytes, 124
Desmodine, 179
Dexamethasone, 46, 225
DiaBeta, 96
Diamox, 225
Diarrhea, 214, 215, 232
Dicloxacinillin, 24
adverse effects, 247
bacterial infections, 55, 61, 65
cost, 63
dosage, 262
in pregnancy, 279
Didanosine, 140
adverse effects, 140, 241
 dosage, 141, 262
HIV, 140
 in pregnancy, 282
Dientamoeba fragilis, 181
Diethylcarbamazine
 adverse effects, 242
 parasitic infections, 181, 182
Diflucan, 96, **122**, 136, 190, 203, 243
Digoxin, **83**, 125
Dilantin, **83**, 123
Diloxanide furoate
 adverse effects, 242
 in pregnancy, 281
 parasitic infections, 179
Dimenhydrinate, 226
Diphenhydramine, 100, 118
Diphtheria, 57
 vaccines, 221
Diphyllobothrium latum, 188
Dipylidium caninum, 188
Directly observed therapy, **87**
Dirithromycin, 20
 adverse effects, 242
 dosage, **262**
 in pregnancy, 278
Disk diffusion tests, 32
Diverticulitis, 50
DLV, see Delavirdine
Docosanol, 161
 dosage, 159
Dofetilide, 125
Dolophine, 96
Dosage tables
 Antimicrobials, 256
 Fungals, 119
 HIV, 141, 143
 Lyme, 114
 Parasitic, 179
Pneumonia, 67, 70
STIs, 195, 196, 199, 200, 202, 204, 206
Surgical prophylaxis, 100, 110
TB, 88, 90, 92
Virals, 159, 160, 162, 168, 173, 176
DOT, **87**
Doxycycline, 29
 adverse effects, 72, 210, 251
 bacterial infections, 58-61, 75, 80, 210, 223
 cost, 63
 dosage, 67, 114, 195, 200, 202, 210, 223, **262**
 in pregnancy, 195, 280
Lyme, 113-115
 parasitic infections, 181, 184, 185, 186
 pneumonia, 65, 66, 68, 74
 STIs, 194, 197, 198, 208
 surgical prophylaxis, 100
Dracunculus medinensis, 181
Dramamine, 226
Drug interactions, 83
 fluconazole, 123
 itraconazole, 125
 ketoconazole, 127
 rifabutin, 93, 95
 rifampin, 93, 95
 voriconazole, 126
Dukoral, 215
Duranon, 212
Duricef, 12, 61, 62, 110, 240
DVT, 225
Dynabac, 20, 242
Echinocandin, 133
 combination therapy, 132
 dosage, 123
Echinococcus granulosus, 188
Echinococcus multilocularis, 188
EDTIAR, 235
Efavirenz, 93, 126, **146**
 adverse effects, 147, 242
 dosage, 143, **262**
 HIV, 146
 in pregnancy, 282
Eflornithine
 adverse effects, 242
 parasitic, 189
EFV, see Efavirenz
Egaten, 1182
Ehrlichia, 112
Ehrlichia chaffeensis, 60
Ehrlichia ewingii, 60
Ehrlichia phagocytophilia, 60
Eikenella corrodens, 58
Elimite, 190
Emtricitabine, 140, 155
 adverse effects, 142, 242
dosage, 141, 262
 HIV, 140
 in pregnancy, 282
Emtricitabine/tenofovir, 155
dosage, 262
Emtriva, 140, 242
E-mycin, 61, 62, 67
Enbrel, 85
Encephalitozoon cuniculi, 186
Encephalitozoon hellem, 186
Encephalitozoon intestinalis, 186
Encepur, 221
Endemic typhus, 60
Endocarditis, 55
 prophylaxis, 109
Endoscopy gastroesophageal, 103
Enfuvirtide, 152
 adverse effects, 152, 242
dosage, 143, 262
 HIV, 152
Engerix-B, 208, 217
Enoxacin, 16, 61
 adverse effects, 243
 bacterial infections, 55
 in pregnancy, 279
Entamoeba histolytica, 179
Entamoeba polecki, 181
Entecavir, 175, 177
 adverse effects, 177, 242
dosage, 178, 264
Enteric gram-negative bacteria, 57
Enterobacter spp., 57, 66
Enterobius vermicularis, 181
Enterococcus, 55
Enterocytozoon bieneusi, 186
Eosinophilic enterocolitis, 180
Epidemic typhus, 60
Epididymitis, 198
 drugs for, 200
Epivir, 141, 245
Epivir HBV, 172, 177
Epogen, 172
Eptizom, 156
ERCP, 104
Ergamisol, 191
Ergot alkaloids, 83, 125
Ertapenem, 9, 61
 adverse effects, 69, 242
 bacterial infections, 56-58
dosage, 70, 264
 in pregnancy, 279
 pneumonia, 65, 68
ERYC, 61, 62, 67
Erysipelothrix rhusiopathiae, 57
Ery-Tab, 61, 62, 80, 242
Erythema migrans, 60, 113
Erythromycin, 20, 70
Erythromycins, 20, 67, 70
 adverse effects, 71, 242
 bacterial infections, 55-60, 75, 79
cost, 62
dosage, 67, 70, 74, 200, 202, 264
 in pregnancy, 72, 195, 279
 pneumonia, 65, 74
 STIs, 197
 surgical prophylaxis, 100
Erythromycin-sulfisoxazole, 21, 28
Erythropoietin, 172
Escherichia coli, 57, 214, 232
Esomeprazole, 59
Esophageal candidiasis, 133
Esophageal surgery, 100, 103
Esophagitis, 133
Etanercept, 85
Ethambutol, 15, 61
 adverse effects, 96, 242
 bacterial infections, 59
dosage, 88, 264
 in pregnancy, 282
TB, 86
Ethionamide, 15, 61
adverse effects, 96, 242
bacterial infections, 59
dosage, 92, 264
in pregnancy, 282
TB, 91, 94

Eurax, 191
Exchange transfusion, 185
Expedited partner treatment, 194

Facial palsy with Lyme disease, 114
Factive, 16, 75, 243
Famciclovir, 158
 adverse effects, 160, 243
cost, 206
dosage, 159, 160, 204, 264
herpes, 158, 207
in pregnancy, 282

Famotidine, 59
Famvir, 158, 204, 243
Fasciola hepatica, 182
Fasciolopsis buski, 182
Filariasis, 181
Fingernail infections, 124, 129
Flagyl, 21, 61, 68, 100, 191, 198, 246
Floxin, 16, 61, 62, 92, 195, 214, 233, 243
Fluconazole, 96, 134, 122, 124, 128
 adverse effects, 123, 243
dosage, 119, 120, 121, 264
in pregnancy, 280
parasitic, 180
STIs, 203
Flucytosine, 129
 adverse effects, 243
dosage, 119, 120, 264
in pregnancy, 280
parasitic, 180
Fluke infections, 182
Flumadine, 67, 166, 249
Fluoroquinolones, 15
 adverse effects, 70, 243
bacterial infections, 55-60, 75, 79
cost, 62
in pregnancy, 71, 195, 279
pneumonia, 65, 66, 68
STIs, 196
surgical prophylaxis, 101
TB, 89, 91, 94, 96
Folinic acid, 187, 188
Fomivirsen, 166
dosage, 162
Fortaz, 11, 61, 70, 99, 240
Fortovase, 94, 143, 151, 250
Fosamprenavir, 94, 150
 adverse effects, 150, 243
dosage, 143, 264
HIV, 150
Foscarnet, 165
 adverse effects, 165, 243
dosage, 159, 162, 264
HIV, 165
in pregnancy, 282
Foscavir, 165, 243
Fosfomycin, 18, 61
 adverse effects, 243
bacterial infections, 55
cost, 62
dosage, 264
in pregnancy, 279
Francisella tularensis, 58
FSME-Immun Inject, 221
FTC, see Emtricitabine
Fulvicin-U/F, 244
Fumagillin, 186
Fumidil B, 186
Fungal infections, 117, 133
Fungizone, 117
 dosage, 119, 136, 186, 239
Furamide, 191
 adverse effects, 242
Furazolidone, 18
 adverse effects, 243
dosage, 264
in pregnancy, 281
parasitic, 182
Furoxone, 18, 191, 243
Fusariosis, 128
 drugs for, 120
Fusobacterium, 58, 65
Fuzeon, 143, 152, 242
Ganciclovir, 163
 adverse effects, 163, 243
CMV, 163
dosage, 162, 264
 in pregnancy, 282
Gantrisin, 29, 61
Garamycin, 7, 61, 99, 101, 110, 118, 197, 200, 244
Gardnerella vaginalis, 58, 201
Gastrointestinal surgery, 100, 103
Gastrostomy, 103
Gatifloxacin, 16, 61
 adverse effects, 71, 243
 bacterial infections, 55, 56, 75, 79
 cost, 62
dosage, 67, 70, 264
 in pregnancy, 279
 pneumonia, 65, 66, 68, 74
 surgical prophylaxis, 101
TB, 92
G-CSF, 163
Gemifloxacin, 16, 61, 75
 adverse effects, 70, 71, 243
 bacterial infections, 55, 56
dosage, 264
 in pregnancy, 279
 pneumonia, 66, 68, 74
Genital herpes, 157, 207
drugs for, 159, 204
Genital warts, 175, 206
drugs for, 202
Genitourinary tract infections, 49
Gentamicin, 7, 61, 118
 adverse effects, 244
 bacterial infections, 55-59
dosage, 110, 200, 264
 in pregnancy, 279
 pneumonia, 65, 69
STIs, 197
 surgical prophylaxis, 99-101
Geocillin, 25, 247
Germanin, 191
Giardia duodenalis, 182
Glanders, 58
Glucantime, 191
 adverse effects, 245
Glyburide, 95
GM-CSF, 163
Gnathostoma spinigerum, 182
Gongylonema, 182
Gonococcus, 56
Gonorrhea, 56, 196, 208
 drugs for, 196, 200
Gramicidin, 101, 179
Granulocyte-colony-stimulating factor, 163
Granuloma inguinale, 58
Griseofulvin
 adverse effects, 244
dosage, 266
 in pregnancy, 280
Guinea worm infection, 181
H2 blockers, 59, 103
HAART, 138
 and tuberculosis, 92
Haemophilus ducreyi, 58, 205
Haemophilus influenzae, 58, 64
Haemophilus influenzae type b vaccine, 216
Halcion, 125
Halfan, 244
Halofantrine
 adverse effects, 244
 malaria, 185
Hantavirus, 176
Haverhill fever, 59
Havrix, 216, 217
HBV, 170
 drugs for, 173, 177
HCV, 170
 drugs for, 173
Head and neck surgery, 101, 105
Helicobacter pylori, 59
Hemorrhagic fever, 176
Hepatitis A vaccine, 216, 217
Hepatitis A/B vaccine, 218
Hepatitis B, 170, 177, 208
 drugs for, 173
vaccine, 217
Hepatitis C, 170
drugs for, 173
Hepatitis D, 170
Hepatitis delta virus, 170
Hepsera, 173, 174, 177, 178, 238
Herpes simplex, 157, 207
drugs for, 159, 160, 204
cost of drugs for, 206
Herpes zoster
drugs for, 160
Heterophyes heterophyes, 182
Hetrazan, 191, 242
Hexamidine, 179
Hib vaccine, 216
High altitude disease, 224
Hiprex
adverse effects, 246
Histoplasma capsulatum, 124
Histoplasmosis, 66, 117, 127
drugs for, 120
HIV infection, 138, 155
cryptosporidiosis, 180
cyclospora, 180
microsporidiosis, 186
PCP, 187
syphilis, 204
TB, 92
toxoplasmosis, 188
microsporidiosis, 186
Hivid, 141, 144, 252
Hookworm infection, 183
HSCT, 133
HSV, see Herpes simplex
Humatin, 191, 247
Humira, 85
Hydatid cyst, 188
Hydroxychloroquine, 185
in pregnancy, 281
Hymenolepis nana, 188
Hypoglycemics, 125
Hysterectomy, 100, 105

IDV, see Indinavir
Ilosone, 72
Imipenem-cilastatin, 10
adverse effects, 69, 244
bacterial infections, 55-60
dosage, 70, 266
in pregnancy, 279
pneumonia, 65, 68, 69, 74
Imiquimod, 175
dosage, 176, 202
genital warts, 207
in pregnancy, 207
Immunizations for travelers, 215
Menactra, 227
Immunomodulators, 175
Imodium, 214, 232
Imovax, 221
Impavido, 183
Imuran, 163
Indinavir, 94, 125, 150
adverse effects, 150, 244
dosage, 143, 266
HIV, 150
in pregnancy, 283
Interferon alfa, 170, 177
adverse effects, 171, 244
dosage, 173, 266
in pregnancy, 283
Intra-abdominal infections, 50
Intron A, 170, 244
Invanz, 9, 61, 70, 242
Invirase, 94, 143, 151, 250
Iodoquinol
adverse effects, 244
in pregnancy, 281
parasitic infections, 179, 180, 181
IPV, 220
Isoniazid, 18, 26, 61
adverse effects, 244
bacterial infections, 59
dosage, 88, 266
in pregnancy, 282
TB, 85
Isospora belli, 183
Itraconazole, 83, 96, 124, 136
adverse effects, 124, 245
dosage, 119, 120, 121, 123, 266
in pregnancy, 280
parasitic, 180
Ivermectin
adverse effects, 245
dosage, 266
in pregnancy, 281
parasitic, 180, 183, 184, 187, 206
Ixodes, 112

Japanese encephalitis vaccine, 219
JE-Vax, 219
Joint infections, 44

Kala-azar, 183
Kaletra, 93, 143, 150, 245
Kanamycin, 7, 61
adverse effects, 96, 245
bacterial infections, 59
dosage, 92, 266
in pregnancy, 279
TB, 91, 94
Kantrex, 7, 61, 91, 92, 245
KBR3023, 213, 235
Keflex, 12, 61, 110, 240
Kefurox, 11, 240
Keratitis, *acanthamoeba*, 179
Ketek, 29, 79, 83, 96, 250, 280
Ketoconazole, 122, 127, 140
adverse effects, 123, 127, 245
dosage, 119, 120, 266
fungal infections, 127
in pregnancy, 280
parasitic infections, 180
Ketolides, 79
Klebsiella pneumoniae, 57, 64, 65, 66
Kwell, 187

Lacerations, 108
LaCrosse encephalitis, 176
L-Amb, 117, 121
adverse effects, 121
dosage, 119, 122, 136, 256
indications, 117, 183
Lamisil, 120, 129, 250
Lamivudine, 142, 156, 172, 177
adverse effects, 142, 173, 245
dosage, 141, 173, 266
HBV, 172, 177, 208
HIV, 142, 156
in pregnancy, 283
Lampit, 191, 247
Lamprene, 14, 61, 241
Lanoxin, 83, 125
Lansoprazole, 59
Laparoscopic cholecystectomy, 104
Lariam, 191, 213, 245
Lassa fever, 176
Legionella, 59, 64, 65
Leishmaniasis, 183
Leprosy, 59
Leptospira, 60, 223
Leptotrichia buccalis, 59
Leshcutan, 183
Leucovorin, 187, 188
Levamisole, 180
Levofloxacin, 16, 61
adverse effects, 71, 243
bacterial infections, 55, 56, 59, 75, 79
cost, 62
dosage, 67, 70, 195, 214, 233, 266
in pregnancy, 195, 279
pneumonia, 65, 66, 68, 74
surgical prophylaxis, 99-101
STIs, 194, 196, 198
TB, 92
travel, 214, 232
Levomethadyl, 125
Lexiva, 10, 94, 143, 150, 243
Lice, 184
Lincocin, 19, 245
Lincomycin, 19
 adverse effects, 245
dosage, 266
Lindane, 187
 in pregnancy, 281
Linezolid, 19, 61
 adverse effects, 71, 245
 bacterial infections, 55, 56, 59-60
dosage, 67, 70, 266
 in pregnancy, 279
 pneumonia, 65, 68, 74
Lipid complex amphotericin, 117, 121
 adverse effects, 121
dosage, 119, 122, 136, 256
Lipitor, 83
Liposomal amphotericin, 117, 121
 adverse effects, 121
dosage, 119, 122, 136, 256
Listeria meningitis, 45
Listeria monocytogenes, 57
Loa loa, 181
Lomefloxacin, 17, 61
 adverse effects, 243
 bacterial infections, 55
dosage, 266
 in pregnancy, 279
Loperamide
dosage, 214
 travel, 214, 232
Lopinavir/ritonavir, 150, 93
 adverse effects, 151, 245
dosage, 143, 268
 HIV, 150
 in pregnancy, 283
Lopressor, 83
Lorabid, 12, 61, 62, 67, 240
Loracarbef, 12, 55, 61, 62, 67, 240, 268, 278
Loratadine, 125
Lovastatin, 83, 123
LPV/RTV, see Lopinavir/ritonavir
Lung Fluke, 182
Lyme disease, 60, 112
 drugs for, 60, 114
Lymphogranuloma venereum, 60, 200
Macrobid, 61, 62
Macrodantin, 22, 61, 62, 247
Macrolides, 19
Malaria, 184, 209
Malarone, 184, 210, 213, 239, 248
Malathion
 adverse effects, 245
 in pregnancy, 281
 lice, 184
Mandelamine, 21
 adverse effects, 246
Mandol, 11, 240
Mansonella ozzardi, 181
Mansonella perstans, 181
Mansonella streptocerca, 182
Maxaquin, 16, 61, 243
Maxipime, 11, 61, 70, 99, 240
MDRTB, 86, 91
Measles vaccine, 215, 219
Mebendazole
 adverse effects, 245
dosage, 268
 in pregnancy, 281
 parasitic infections, 180, 181, 183, 188, 189
Meclizine, 226
Mefloquine
 adverse effects, 210, 245
dosage, 213, 268
 in pregnancy, 281
 malaria, 185, 186, 210
Mefoxin, 11, 61, 99, 198, 200, 240
Meglumine antimoniate
 adverse effects, 245
 parasitic infections, 183
Mel B, 191, 245
Melarsoprol
 adverse effects, 245
 parasitic infections, 189
Melatonin, 226
Melioidosis, 58
Menactra, 227
Meningitis, 45, 117
 vaccines, 220, 227
Meningococcus, 56
Menomune, 220
Meperidine, 118
Mepron, 239
Meropenem, 10
 adverse effects, 69, 246
 bacterial infections, 55-60
 dosage, 70, 268
in pregnancy, 279
pneumonia, 65, 68, 69, 74
Merrem, 10, 61, 70
Metagonimus yokogawai, 182
Methadone, 12, 96
Methenamines, 21
 adverse effects, 246
 dosage, 268
in pregnancy, 279
Methicillin, 24
 adverse effects, 247
Methicillin-resistant staphylococci, 44, 52, 53, 55, 69, 74, 99
Methylbenzethonium, 184
Metoprolol, 83
Metorchis conjunctus, 182
Metronidazole, 21
 adverse effects, 246
 bacterial infections, 56, 58, 59, 61
 dosage, 199, 200, 202, 268
in pregnancy, 199, 279, 281
parasitic infections, 179, 180, 181, 182, 189
pneumonia, 65, 68
STIs, 198, 208
surgical prophylaxis, 100
Mevacor, 83, 123
Mezlocillin
 adverse effects, 247
Micafungin, 129, 133
 adverse effects, 246
 dosage, 268
Miconazole
 adverse effects, 246
 dosage, 119, 121, 268
in pregnancy, 280
parasitic infections, 180
STIs, 203
Microsporidiosis, 186
Midazolam, 83, 125
Milefotison
 indications and dosage, 183
Minocin, 29, 61, 251
Minocycline, 29, 61
 adverse effects, 251
 bacterial infections, 58-60
 dosage, 268
in pregnancy, 280
Mintezol, 251
MMR vaccine, 219
Mobiluncus, 201
Molds, 122
Molluscum contagiosum, 176
Moniliformis moniliformis, 186
Monistat, 246
Monocid, 11, 240
Monurof, 18, 61, 62, 243
Moraxella catarrhalis, 56
Morganella morganii, 57
Motion sickness, 226
Moxifloxacin, 16, 61
 adverse effects, 71, 243
 bacterial infections, 55, 56, 75, 79
 cost, 62
 dosage, 67, 70, 268
 in pregnancy, 279
 pneumonia, 65, 66, 68, 74
 surgical prophylaxis, 101
TB, 92
MPC, 197
MRSA, 44, 52, 53, 55, 99
Mucopurulent cervicitis, 197
Mucormycosis
 drugs for, 120
Myambutol, 15, 61, 86, 88, 96, 242
Mycamine, 129, 133, 246
Mycobacterium avium complex, 59, 71
Mycobacterium cheloneae complex, 59
Mycobacterium fortuitum complex, 59
Mycobacterium kansasii, 59
Mycobacterium leprae, 59
Mycobacterium marinum, 59
Mycobacterium tuberculosis, 59, 85
Mycobutin, 27, 61, 88, 89, 148, 249
Mycophenolate mofetil, 135, 163
Mycoplasma genitalium, 197
Mycoplasma hominis, 198, 201
Mycoplasma pneumoniae, 60, 64, 65, 74
Mycostatin, 247

Naegleria species, 180
Nafcillin, 24, 61
 adverse effects, 247
 bacterial infections, 55
dosage, 268
 in pregnancy, 279
 pneumonia, 65
Nalidixic acid, 27
 adverse effects, 246
dosage, 268
 in pregnancy, 279
Nallpen, 61
Nanophyetus salmincola, 182
Natamycin, 179
Nebcin, 8, 61, 251
NebuPent, 191, 248
Necator americanus, 183
NegGram, 27, 246
Neisseria gonorrhoeae, 56, 196, 198
Neisseria meningitides, 56, 220, 227
Nelfinavir, 94, 151
 adverse effects, 151, 246
dosage, 143, 268
 HIV, 151
 in pregnancy, 283
Neomycin, 8
 adverse effects, 246
 parasitic infections, 179
 surgical prophylaxis, 100, 101
Neomycin-polymyxin B, 179
Neonatal meningitis, 46
Neoral, 118, 135
Neurosurgery, 101
Neurosyphilis, 204, 205
drugs for, 202
Nexium, 59
NFV, see Nelfinavir
NGU, 197
Nicloide, 246
Niclosamide
 adverse effects, 246
 in pregnancy, 281
 parasitic infections, 188
Nifedipine, 135
Nifurtimox
 adverse effects, 247
 parasitic infections, 189
Nipah viruses, 176
Nitazoxanide
 adverse effects, 247
dosage, 270
 in pregnancy, 279
Nitrofurantoin, 22, 61
 adverse effects, 247
 bacterial infections, 55
cost, 62
dosage, 270
 in pregnancy, 279
Nix, 192, 248
Nizatidine, 59
Nizoral, 83, 96, 122, 192, 245
NNRTIs, 145
Nocardioid, 60
Nongonococcal urethritis, 197
Non-nucleoside reverse transcriptase inhibitors, 145
Norfloxacin, 17, 61
 adverse effects, 243
 bacterial infections, 55
cost, 62
dosage, 214, 215, 233, 270
 in pregnancy, 279
 traveler’s diarrhea, 214, 215, 232
Noroxin, 17, 61, 62, 214, 233, 243
Norvir, 83, 93, 125, 143, 150, 249
Nosema corneae, 186
Nosocomial pneumonia, 47
Nucleoside reverse transcriptase inhibitors, 138
Nucleotide reverse transcriptase inhibitors, 144
NVP, see Nevirapine
Nydradiz, 18, 244
Nystatin, 117
adverse effects, 247
in pregnancy, 280
Octratide, 186
Oesophagostomum bifurcum, 186
Ofloxacine, 17, 61, 110
adverse effects, 243
bacterial infections, 56, 59-60
cost, 62
dosage, 195, 196, 200, 202, 214, 215, 233, 270
in pregnancy, 195, 279
STIs, 194, 196, 197, 198
TB, 92
traveler’s diarrhea, 214, 215, 232
Omeprazole, 59, 103, 125
Omnicef, 13, 61, 62, 67, 240
Omnipen, 110
Onchocerca volvulus, 182
Onychomycosis, 124, 129
drugs for, 120
Opisthorchis viverrini, 182
Oral rehydration salts, 215, 232
Orapid, 83, 125
Orientia tsutsugamushi, 60
Orlaam, 125
Ornidazole
adverse effects, 247
parasitic infections, 180
Ornidyl, 242
Ornithosis, 60
Oroalabial herpes, 161
drugs for, 159
Orthopedic surgery, 101, 107
Oxelamivir, 168
adverse effects, 73, 169, 247
dosage, 67, 168, 270
in pregnancy, 283
influenza, 168
pneumonia, 65
Osteomyelitis, 44
Ovide, 245
Oxacillin, 24, 61
adverse effects, 247
bacterial infections, 55
cost, 63
dosage, 270
in pregnancy, 279
pneumonia, 65
Oxamnique
adverse effects, 247
in pregnancy, 281
parasitic infections, 187
Oxycetramic, 29
adverse effects, 251
in pregnancy, 280
Pacemakers, 103
Paludrine, 186, 192, 300, 248
Pantoprazole, 59
Papillomavirus, 175, 206
drugs for, 176
Para-aminosalicylic acid, 8
adverse effect, 96, 238
dosage, 92, 256
TB, 59, 91, 94
Paracentesis, 108
Paracoccidioides brasiliensis, 124
Paracoccidioidomycosis, 117, 127
drugs for, 120
Paragonimus westermani, 182
Parainfluenza, 64
Parasitic infections
drugs for, 179
Paromomycin
adverse effects, 247
dosage, 270
in pregnancy, 281
parasitic infections, 179, 180, 181, 182, 183
Partner treatment, 194
Paser, 8, 61, 91, 92, 238
Pasteurella multocida, 59
Pathogens in specific organs, 32
PCP, 187
Pediazole, 21
Pediculosis, 184, 206
Pediculus humanus, capitis, 184
Pediculus pubis, 184
Pegasys, 170, 244
PEG-Intron, 170, 244
Pegylated interferon alfa, 170
adverse effects, 171, 244
dosage, 173, 266
in pregnancy, 283
Pelvic inflammatory disease, 198
drugs for, 200
Penciclovir, 161
dosage, 159
herpes, 161
Penetrex, 16, 61, 243
Penicillin allergy, 46, 69, 101, 110, 202, 205
Penicillin G, 22
adverse effects, 72, 247
bacterial infections, 55, 56, 58-60
dosage, 70, 202, 270
in pregnancy, 279
pneumonia, 65, 68
STIs, 203, 204
surgical prophylaxis, 100
Penicillin V, 22
adverse effects, 72, 247
bacterial infections, 55, 56
cost, 62
dosage, 270
in pregnancy, 279
pneumonia, 65
Penicillinase-resistant penicillins, 24, 65
Pentam, 165, 192, 248
Pentamidine isethionate
adverse effects, 165, 248
dosage, 270
in pregnancy, 281
parasitic infections, 180, 183, 187, 189
Pentostam, 250
Pen-Vee K, 61
Pepcid, 59
Peptic ulcers, 59
Pepto-Bismol, 214, 232
Peptostreptococcus, 56
Perinatal HIV transmission, 152
Permanone, 212
Permethrin, 113, 184, 187, 206, 212
adverse effects, 248
in pregnancy, 281
Pertussis, 58
Pfizerpen, 70
Phenergan, 226
Phenytoin, 83, 123
PHMB, 179
Phthirius pubis, 184, 206
Picaridin, 113, 213, 235
PID, 198
drugs for, 200
Pimaricin, 179
Pimozide, 83
Pinworms, 181
Piperacillin, 25, 61
adverse effects, 72, 247
bacterial infections, 55
dosage, 70, 270
in pregnancy, 279
pneumonia, 65
Piperacillin-tazobactam, 25
bacterial infections, 55, 57-9
dosage, 70, 270
in pregnancy, 279
pneumonia, 65, 68
Piperazine
in pregnancy, 281
Piperonyl butoxide, 184
Pipracil, 25, 247
PLs, 148
Plague, 59
Plasmodium falciparum, 184, 212
Plasmodium ovale, 184, 210
Plasmodium vivax, 184, 210, 212
Plastic surgery, 108
Pleistophora sp., 186
Pneumococcus, 56, 64, 66, 74
Pneumocystis carinii, 66, 133, 187
Pneumocystis jiroveci, 66, 133, 187
Pneumonia, 47, 75, 79, 187
drugs for, 64
Pneumocystis jiroveci, 66, 133, 187
Podofilox, 207
Podophyllin
dosage, 202
HPV, 206
Polio vaccine, 220
Polyhexamethylene biguanide, 179
Polymyxins, 26
adverse effects, 248
bacterial infections, 58
dosage, 270
surgical prophylaxis, 101
Posaconazole, 127
dosage, 120
Post-lyme syndrome, 115
Pox virus, 162
PPD, 85
Praziquantel
adverse effects, 248
dosage, 270
in pregnancy, 281
parasitic infections, 182, 187, 188
Pregnancy
antimicrobial safety, 278
bacterial vaginosis, 201
chlamydia, 195
fungal infections, 130
gonorhea, 197
hepatitis, 172
herpes and varicella, 158
HIV, 152
influenza, 167, 172
pneumonia, 70
syphilis, 205
trichomonas, 199
tuberculosis, 86, 94
Prevacid, 59
Priftin, 28, 88, 96, 249
Prilosec, 59, 103, 127
Primaquine phosphate
adverse effects, 211
dosage, 210, 211
in pregnancy, 211
indications, 210
parasitic infections, 185, 186, 187
Primaquine,
adverse effects, 248
dosage, 270
in pregnancy, 281
Primaxin, 9, 61, 70, 244
Princepen, 23, 61, 63, 247
Procardia, 135
Procit, 172
Procrit, 172
Prograf, 83, 118, 135
Proguanil
adverse effects, 248
in pregnancy, 281
malaria, 210, 213
parasitic infections, 184, 185, 186
Proloprim, 30, 252
Promethazine, 226
Propamidine isethionate, 179
Propulsid, 83, 125
Prostatitis, 50
Prostheses, 101, 109
Protease inhibitors, 148
Proteus indole-positive, 57
Proteus mirabilis, 57
Proteus vulgaris, 57
Proton pump inhibitors, 59, 103
Protonix, 59
Providencia rettgeri, 57
Providencia stuartii, 57
Pseudallescheria boydii, 117
Pseudallescheriasis
drugs for, 120
Pseudomonas aeruginosa, 59, 66, 69
Pseudomonas mallei, 58
Pseudomonas pseudomallei, 58
Psittacosis, 60
Pubic lice, 184, 206
Pyelonephritis, 49
Pyrantel pamoate
adverse effects, 248
dosage, 270
in pregnancy, 281
parasitic infections, 180, 181, 183, 186, 189

Pyrazinamide, 18, 26
adverse effects, 96, 248
dosage, 88, 272
in pregnancy, 282

TB, 85

Pyrethrins with piperonyl butoxide
adverse effects, 248
in pregnancy, 282
parasitic infections, 184

Pyrimethamine
adverse effects, 248
dosage, 272
in pregnancy, 282
parasitic infections, 182, 188

Pyrimethamine/sulfadoxine
dosage, 272
in pregnancy, 282
parasitic infections, 184, 186

PZA, see Pyrazinamide

RabAvert, 221
Rabeprazole, 59
Rabies immune globulin, 221
Rabies vaccine, 220
Ranitidine, 59, 103
Rapamune, 83, 126, 135
Rat bite fever, 59
Rebetol, 172, 173, 249
Recombivax HB, 217, 208
Relapsing fever, 60
Relenza, 67, 168, 169, 252
Remicade, 85
Rescriptor, 96, 143, 146, 241
Respiratory syncytial virus, 64, 175
drugs for, 176
Retrovir, 123, 141, 144, 163, 208, 252
Reyataz, 94, 143, 149, 239
Rhizomucor, 126
Rhodococcus equi, 60
Ribavirin, 172, 175
adverse effects, 73, 172, 249
dosage, 67, 173, 176, 272
in pregnancy, 73, 172, 283

Rickettsia prowazekii, 60
Rickettsia rickettsii, 60
Rickettsia typhi, 60
RID, 192, 248

Rifabutin
adverse effects, 96, 249
bacterial infections, 60
dosage, 88, 272
in pregnancy, 282
TB, 89, 93, 148
Rifadin, 61, 83, 88, 95, 123, 148, 192, 249
Rifamute, 18, 28, 90
Rifampin, 18, 27
adverse effects, 95, 249
bacterial infections, 55, 56, 58-60
dosage, 272
in pregnancy, 282
interactions, 83, 123, 148
parasitic infections, 180
pneumonia, 65
TB, 85
Rifampin/isoniazid, dosage, 272
Rifampin/isoniazid/pyrazinamide, dosage, 272
Rifapentine, 28
 adverse effects, 96, 249
dosage, 88, 272
 in pregnancy, 282
TB, 89
Rifater, 18, 26, 28, 90
Rifaximin, 28
 adverse effects, 249
dosage, 272
 in pregnancy, 279
Rimactane, 27, 85, 88, 249
Rimantadine, 166
 adverse effects, 73, 167, 249
dosage, 67, 168, 272
 in pregnancy, 167, 283
 pneumonia, 65
Ritonavir, 151
 adverse effects, 151, 249
dosage, 143, 272
 HIV, 151
 in pregnancy, 283
 TB, 94
Sarcoptes scabiei, 187, 206
SARS, 64, 176, 223
Scabies, 206, 187
Scedosporiosis
 drugs for, 120
Scedosporium apiospermum, 126
SCH 56592, 127
Schistosoma hematobium, 187
Schistosoma japonicum, 187
Schistosoma mansoni, 187
Schistosoma mekongi, 187
Scopace, 226
Scopolamine, 226
Scrub typhus, 60
Sepsis syndrome, 51
Septata intestinalis, 186
Septic arthritis, 44
Septra, 30, 61, 63, 252
Seromycin, 61, 91, 92, 96, 241
Serratia spp., 57, 66
Severe acute respiratory syndrome, 64, 223, 224
Sexual assault prophylaxis, 208
Sexually transmitted infections
 drugs for, 194
Sheep liver fluke, 182
Shigella, 58, 214, 232
Simvastatin, 83, 123
Sinusitis, 79
Sirolimus, 83, 126, 135
Skin infections, 43
Sleeping sickness, 189
Soft tissue infections, 43
Sotalol, 83
Southeastern Asian Liver Fluke, 182
Spectinomycin, 28
 adverse effects, 250
dosage, 196, 200, 272
 in pregnancy, 279
STIs, 197
Spectracef, 13, 55, 61, 62, 67, 240

Salmonella, 57, 214, 232
Sandimmune, 118, 135
Sandostatin, 186
Sappinia diploidea, 180
Saquinavir, 151
 adverse effects, 250
Spiramycin
adverse effects, 250
parasitic infections, 188
Spirillum minus, 59
Spirochetes, 60
Sporanox, 12, 83, 96, 119, 122, 136, 192, 245
Sporothrix, 124
Sporotrichosis, 117
drugs for, 121
SQV, see Saquinavir
Staphylococcus aureus, 55, 65, 66, 69, 74, 114
Staphylococcus epidermidis, 55
Stavudine, 142
adverse effects, 142, 250
dosage, 141, 272
HIV, 142
in pregnancy, 283
STDs, 194
Stenotrophomonas maltophilia, 59
Stibogluconate sodium
adverse effects, 250
parasitic infections, 183
STIs, 194
Streptobacillus moniliformis, 59
Streptococcus bovis, 56
Streptococcus Group B, 56
Streptococcus pneumoniae, 56, 64, 65, 74, 79
Streptococcus pyogenes, 55, 114
Streptococcus viridans, 56
Stryptomycin, 8
adverse effects, 96, 250
bacterial infections, 55, 58, 59, 61
dosage, 92, 274
in pregnancy, 279, 282
TB, 91
Stromectol, 192, 206, 245
Strongyloides stercoralis, 187
Sulbactam, 24, 58, 200
Sulfadiazine
dosage, 274
parasitic infections, 180, 188
Sulfamethoxazole, 30
Sulfisoxazole, 21, 29, 61
dosage, 274
Sulfonamides, 28
adverse effects, 250
bacterial infections, 56, 59, 60
in pregnancy, 279
Sumycin, 61, 63, 251
Sunscreens, 212
Suprax, 61, 196, 200, 240
Suramin sodium
adverse effects, 250
in pregnancy, 282
parasitic infections, 189
Surgical site infections, 98
Susceptibility tests, 32
Sustiva, 93, 126, 143, 146
Symmetrel, 67, 166, 238
Synercid, 27, 61, 249
Syphilis, 60, 203
drugs for, 202
T20, see Enfuvirtide
Tacrolimus, 83, 118, 135
Taenia saginata, 188
Taenia solium, 188
Tagamet, 59, 130
Tamiflu, 67, 168, 247
TAO, 21
adverse effects, 252
Tapeworm infection, 188
Tazicef, 61, 70, 240
Tazidime, 61, 70, 240
TB, 60, 85
TBE vaccine, 221
TD booster, 221
TDF, see Tenofovir
Tegretol, 83, 125
Telithromycin, 29, 79
adverse effects, 250
dosage, 274
in pregnancy, 279
pneumonia, 65
Tenofovir, 144, 155
adverse effects, 145, 250
dosage, 141, 274
HIV, 144
 in pregnancy, 283
Tequin, 16, 61, 63, 67, 70, 75, 79, 92, 243
Terbinafine, 129
 adverse effects, 129, 250
 dosage, 120, 121, 119, 274
 fungal infections, 129
Terconazole
 dosage, 119
 STIs, 203
Terramycin, 29, 251
Tetanus, 56
 vaccines, 221
Tetanus-diphtheria vaccine, 221
Tetracyclines, 29
 adverse effects, 72, 251
 bacterial infections, 55-60, 80
 cost, 63
 in pregnancy, 72, 280
 parasitic infections, 180, 181, 184, 185
Theodur, 83
Theophyllines, 83
Thiabendazole
 adverse effects, 251
 dosage, 274
 in pregnancy, 282
 parasitic infections, 180, 187
Thoracentesis, 108
Thoracostomy, 107
3TC, see Lamivudine
Thromboembolism, 225
Tiberal, 247
Ticar, 25, 61, 247
Ticarcillin, 25
 adverse effects, 72, 247
 bacterial infections, 55
 dosage, 274
 in pregnancy, 279
 pneumonia, 65
Ticarcillin-clavulanic acid, 26
 adverse effects, 247
 bacterial infections, 55, 57-9, 61
 dosage, 70, 274
 in pregnancy, 279
 pneumonia, 65, 68
Tick-borne encephalitis vaccine, 221
Ticks, 112, 235
Tigecycline, 30
 adverse effects, 251
 dosage, 274
Tikosyn, 125
Timentin, 26, 61, 70, 247
Tindamax, 193, 198, 208, 251
Tinea pedis
 drugs for, 121
Tinidazole
 adverse effects, 251
 cost, 199
 dosage, 199, 202, 274
 parasitic infections, 179, 180, 182, 188
 STIs, 198, 208
Tioconazole, 203
 dosage 119
Tipranavir
 adverse effects, 251
Tipranavir/ritonavir
 dosage, 274
TNF inhibitors, 85
Tobramycin, 8
 adverse effects, 251
 bacterial infections, 57-9
 dosage, 274
 in pregnancy, 280
 pneumonia, 65, 69
 surgical prophylaxis, 101
Toenail infections, 124, 129
Topical azoles
 dosage 119, 121
Toxocariasis, 189
Toxoplasma gondii, 188
TPE, 182
Trachipleistophora, 186
Trachoma, 60
Transderm Scop, 226
Transfusions, for malaria, 185
Travel information, 209
Menactra, 227
Travelers’ diarrhea, 214
 rifaximin, 232
Trecator-SC, 15, 91, 92, 242
Trench fever, 60
Treponema pallidum, 60, 204
Treponema pertenue, 60
Triazolam, 125
Trichinella spiralis, 188
Trichloroacetic acid, 206
dosage, 202
in pregnancy, 207
Trichomonas vaginalis, 189
Trichomoniasis, 198, 208
drugs for, 199, 202
in pregnancy, 199
Trichostrongylus infection, 189
Trichuriasis, 189
Trichuris trichiura, 189
Triclabendazole, 182
Trifluridine, 162
adverse effects, 251
dosage 159
Trimethoprim, 30, 61
adverse effects, 252
dosage, 274
in pregnancy, 280
parasitic infections, 187
Trimethoprim-sulfamethoxazole, 30, 61
adverse effects, 252
bacterial infections, 55-60
cost, 63
dosage, 274
in pregnancy, 280
parasitic infections, 180, 181, 183, 187, 188
pneumonia, 65
Trimetrexate
adverse effects, 252
parasitic infections, 187
Trimex, 61
Trizivir, 141, 144, 153
Trobicin, 28, 197, 250
Troleandomycin, 21
adverse effects, 252
Tropheryma whippelii, 60
Tropical Pulmonary Eosinophilia, 182
Trovafoxacin, 18
adverse effects, 243
Trovan, 18, 243
Truvada, 140, 155
Trypanosomiasis, 189
Tuberculosis, 59, 66
drugs for, 85
Tularemia, 58
TWAR, 60
Twinrix, 218
Tygacil, 30, 251
Tylenol, 118
Typhim Vi, 222
Typhoid fever, 57
Typhoid vaccine, 221, 222
Typhus, 60
Ultrathon, 212, 235
Unasyn, 24, 61, 200, 247
Ureaplasma urealyticum, 60, 197
Urethritis, 197, 198
drugs for, 200
Urex, 246
Urinary tract infections, 49, 79
Vaccines
for travelers, 215
Menactra, 227
Vaccinia virus, 162, 176
Vaginal infections, 58, 201
Vaginosis, 58
Valacyclovir, 160
adverse effects, 161, 252
dosage, 159, 160, 204, 274
in pregnancy, 283
STIs, 207, 208
Valcyte, 164, 252
Valganciclovir, 164
adverse effects, 164, 252
dosage, 162, 276
in pregnancy, 283
Valtrex, 159, 160, 204, 207, 252
Vancocin, 30, 61, 70, 99, 110, 252
Vancomycin, 30
adverse effects, 73, 252
bacterial infections, 55-60
dosage, 70, 110, 276
in pregnancy, 73, 280
pneumonia, 65, 68, 69, 74
surgical prophylaxis, 99-101
Vansil, 193
Vantin, 13, 61, 62, 67, 196, 240
Vaqt, 216, 217
Varicella-Zoster virus, 157
drugs for, 160
Varicose vein sugery, 108
Variola, 176
Veetids, 61, 63
Velosef, 12, 61, 62, 240
Venous thromboembolism, 225
Vermox, 193, 245
Versed, 83, 125
Vfend, 122, 125, 136, 252
Vibramycin, 29, 61, 63, 67, 75, 80, 113, 193, 194, 213, 251
Vibrio cholerae, 59
Vibrio vulnificus, 59
Vidarabine
 in pregnancy, 283
Videx, 140, 241
Viracept, 94, 151, 246
Viral infections, 157, 177
Viramune, 93, 127, 147, 246
Virazole, 67, 175, 249
Viread, 144, 250
Viridans streptococci, 110
Viproptic, 162, 251
Visceral larva migrans, 189
Visceral leishmaniasis, 183
Vistide, 165, 240
Vitrascert, 163
dosage 162
Vitravene, 166
dosage, 162
Vittaforma corneae, 186
Viviot Berna, 222
Voriconazole, 122, 125, 136
adverse effects, 126, 252
dosage, 119, 120, 123, 276
in pregnancy, 280
Vulvovaginal candidiasis, 203
drugs for, 119
VZV, 157

Warfarin, 96, 123
West Nile virus, 176
Whipple’s disease, 60
Whipworm, 189
Whooping cough, 58
Wolbachia, 181
Wuchereria bancrofti, 181
Xifaxan, 28, 249

Yaws, 60
Yellow fever vaccine, 215, 222
Yersinia enterocolitica, 58
Yersinia pestis, 59
Yodixin, 193, 244
Yomesan, 193

Zalcitabine, 144
adverse effects, 144, 252
dosage, 141, 276
in pregnancy, 283
Zanamivir, 169
adverse effects, 73, 169, 252
dosage, 67, 168, 276
in pregnancy, 283
pneumonia, 65
Zantac, 59, 103
ZDV, see Zidovudine
Zerit, 141, 142, 250
Ziagen, 139, 238
Zidovudine, 144, 152, 208
adverse effects, 144, 252
dosage, 141, 276
in pregnancy, 283
interactions, 123, 163
Zidovudine/lamivudine, 144
dosage, 141, 276
Zidovudine/lamivudine/abacavir, 144
dosage, 141, 276
Zinacef, 11, 61, 240
Zithromax, 19, 61, 67, 70, 75, 80, 110, 114, 194, 215, 233, 239
Zocor, 83, 123
Zolpidem, 226
Zoster virus, 157
Zosyn, 25, 70, 247
Zovirax, 157, 159, 204, 238
Zygomycetes, 122
Zygomycosis, 117
Zyloprim, 96
Zyvox, 19, 61, 62, 67, 70, 245